MHB What is the Maximum Area of an Inscribed Pentagon with Perpendicular Diagonals?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Area Maximum
Click For Summary
The problem focuses on determining the maximum area of a pentagon inscribed in a unit circle with perpendicular diagonals AC and BD. It is established that the area can be maximized by strategically placing the vertices of the pentagon on the circle. Mathematical approaches involve using trigonometric identities and properties of cyclic polygons. The optimal configuration leads to a specific arrangement of angles that maximizes the area. Ultimately, the maximum area of such a pentagon is derived through geometric analysis and optimization techniques.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum area of a pentagon $ABCDE$ inscribed in a unit circle such that the diagonal $AC$ is perpendicular to the diagonal $BD$.
 
Mathematics news on Phys.org
[TIKZ]\draw circle (3) ;
\draw [help lines, ->] (-3.5,0) -- (3.5,0) ;
\draw [help lines, ->] (0,-3.5) -- (0,3.5) ;
\coordinate [label=below left:$O$] (O) at (0,0) ;
\coordinate [label=above:$A$] (A) at (110:3) ;
\coordinate [label=left:$B$] (B) at (210:3) ;
\coordinate [label=below:$C$] (C) at (250:3) ;
\coordinate [label=right:$D$] (D) at (330:3) ;
\coordinate [label=right:$E\ $] (E) at (40:3) ;
\draw [thick] (A) -- (B) -- (C) -- (D) -- (E) -- cycle ;
\draw (C) -- (A) -- (D) -- (B) ;
\draw [thin] (A) -- (0,0) -- (E) ;
\draw [thin] (0,0) -- (D) ;
\draw (0.6,0.25) node{$\delta$} ;
\draw (0.1,0.35) node{$\gamma$} ;
\draw (-1,3.5) node{$(\cos(\delta + \gamma), \sin(\delta + \gamma))$} ;
\draw (-4.5,-1.9) node{$(-\cos(\delta - \gamma), \sin(\delta - \gamma)$} ;
\draw (-1,-3.5) node{$(\cos(\delta + \gamma), -\sin(\delta + \gamma)$} ;
\draw (4.4,-1.9) node{$(\cos(\delta - \gamma), \sin(\delta - \gamma)$} ;
\draw (3.8,1.9) node{$(\cos\delta, \sin\delta)$} ;[/TIKZ]
Choose a coordinate system with the unit circle centred at the origin $O$, the $x$-axis parallel to $BD$ and the $y$-axis parallel to $AC$, as in the diagram. Split the pentagon into the quadrilateral $ABCD$ and the triangle $ADE$. If $ABCD$ is kept fixed then the area of $ADE$ is maximised when $E$ is midway between $A$ and $D$ on the arc $AD$. Suppose that $OE$ then makes an angle $\delta$ with the $x$-axis, and let $2\gamma$ be the angle $AOD$, so that the angles $AOE$ and $EOD$ are both $\gamma$. The coordinates of $A$, $B$, $C$, $D$ and $E$ are then as shown in the diagram.

The area of $ABCD$ is the sum of the areas of triangles $BAD$ and $CAD$, with base $BD$ and combined height $AC$. So (using a product-to-sum identity) $$\text{Area}(ABCD) = \tfrac12AC\cdot BD = 2\sin(\delta+\gamma)\cos(\delta-\gamma) = \sin(2\delta) + \sin(2\gamma).$$ The triangle $ADE$ has base $AD = 2\sin\gamma$ and height $1-\cos\gamma$, so its area is $\sin\gamma(1-\cos\gamma)$.

Thus the area of the pentagon is $\sin(2\delta) + \sin(2\gamma) + \sin\gamma(1-\cos\gamma) = \sin(2\delta) + \sin\gamma(1+\cos\gamma)$. As far as $\delta$ is concerned, this is maximised when $\sin(2\delta) = 1$, or $\delta = 45^\circ$. To maximise the $\gamma$-function, differentiate it, getting $\cos\gamma(1+\cos\gamma) - \sin^2\gamma = 0$. That gives $2\cos^2\gamma + \cos\gamma - 1 = 0$, so that $(2\cos\gamma - 1)(\cos\gamma + 1) = 0$. The maximum occurs when $\cos \gamma = \frac12$, or $\gamma = 60^\circ$.

The maximum area of the pentagon is therefore $1 + \frac{\sqrt3}2\bigl(1+ \frac12\bigr) = 1 + \frac{3\sqrt3}4$.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
21
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K