MHB What is the Maximum Area of an Inscribed Pentagon with Perpendicular Diagonals?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Area Maximum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum area of a pentagon $ABCDE$ inscribed in a unit circle such that the diagonal $AC$ is perpendicular to the diagonal $BD$.
 
Mathematics news on Phys.org
[TIKZ]\draw circle (3) ;
\draw [help lines, ->] (-3.5,0) -- (3.5,0) ;
\draw [help lines, ->] (0,-3.5) -- (0,3.5) ;
\coordinate [label=below left:$O$] (O) at (0,0) ;
\coordinate [label=above:$A$] (A) at (110:3) ;
\coordinate [label=left:$B$] (B) at (210:3) ;
\coordinate [label=below:$C$] (C) at (250:3) ;
\coordinate [label=right:$D$] (D) at (330:3) ;
\coordinate [label=right:$E\ $] (E) at (40:3) ;
\draw [thick] (A) -- (B) -- (C) -- (D) -- (E) -- cycle ;
\draw (C) -- (A) -- (D) -- (B) ;
\draw [thin] (A) -- (0,0) -- (E) ;
\draw [thin] (0,0) -- (D) ;
\draw (0.6,0.25) node{$\delta$} ;
\draw (0.1,0.35) node{$\gamma$} ;
\draw (-1,3.5) node{$(\cos(\delta + \gamma), \sin(\delta + \gamma))$} ;
\draw (-4.5,-1.9) node{$(-\cos(\delta - \gamma), \sin(\delta - \gamma)$} ;
\draw (-1,-3.5) node{$(\cos(\delta + \gamma), -\sin(\delta + \gamma)$} ;
\draw (4.4,-1.9) node{$(\cos(\delta - \gamma), \sin(\delta - \gamma)$} ;
\draw (3.8,1.9) node{$(\cos\delta, \sin\delta)$} ;[/TIKZ]
Choose a coordinate system with the unit circle centred at the origin $O$, the $x$-axis parallel to $BD$ and the $y$-axis parallel to $AC$, as in the diagram. Split the pentagon into the quadrilateral $ABCD$ and the triangle $ADE$. If $ABCD$ is kept fixed then the area of $ADE$ is maximised when $E$ is midway between $A$ and $D$ on the arc $AD$. Suppose that $OE$ then makes an angle $\delta$ with the $x$-axis, and let $2\gamma$ be the angle $AOD$, so that the angles $AOE$ and $EOD$ are both $\gamma$. The coordinates of $A$, $B$, $C$, $D$ and $E$ are then as shown in the diagram.

The area of $ABCD$ is the sum of the areas of triangles $BAD$ and $CAD$, with base $BD$ and combined height $AC$. So (using a product-to-sum identity) $$\text{Area}(ABCD) = \tfrac12AC\cdot BD = 2\sin(\delta+\gamma)\cos(\delta-\gamma) = \sin(2\delta) + \sin(2\gamma).$$ The triangle $ADE$ has base $AD = 2\sin\gamma$ and height $1-\cos\gamma$, so its area is $\sin\gamma(1-\cos\gamma)$.

Thus the area of the pentagon is $\sin(2\delta) + \sin(2\gamma) + \sin\gamma(1-\cos\gamma) = \sin(2\delta) + \sin\gamma(1+\cos\gamma)$. As far as $\delta$ is concerned, this is maximised when $\sin(2\delta) = 1$, or $\delta = 45^\circ$. To maximise the $\gamma$-function, differentiate it, getting $\cos\gamma(1+\cos\gamma) - \sin^2\gamma = 0$. That gives $2\cos^2\gamma + \cos\gamma - 1 = 0$, so that $(2\cos\gamma - 1)(\cos\gamma + 1) = 0$. The maximum occurs when $\cos \gamma = \frac12$, or $\gamma = 60^\circ$.

The maximum area of the pentagon is therefore $1 + \frac{\sqrt3}2\bigl(1+ \frac12\bigr) = 1 + \frac{3\sqrt3}4$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top