SolusVir said:
Ok so I have the same question and don't really know how to tackle it either. I'm assuming we are going to be using conservation of momentum and conservation of energy, and my initial thought was that I would have to move to the frame of reference where the proton is at rest. I'm going to take a bit of a stab here, but i"m assuming this is the center of mass frame.
No, these two frames are not the same. "Center of mass frame" is actually poor and confusing terminology here, because the photon has zero mass. What we really mean by "center of mass frame" is the frame where the total momentum is zero. In this frame, the proton is not at rest, but is moving to the left, towards the photon that is moving to the right.
It's actually not necessary to do the math for this problem in the "center of mass" (zero-momentum) frame. I did it in the lab frame, using the numbers given in the problem statement. Nevertheless, it is very useful to consider what this process looks like, qualitatively, in the "center of mass" frame, because it tells you what the "minimum energy" condition means in terms of the outcome, both in this frame and in the lab frame.
In the "center of mass" frame, what does this process look like, specifically in terms of the directions of motion of the two incoming particles, and of the two outgoing particles? What condition on the two outgoing particles gives you the minimum total energy in this frame, and therefore the minimum energy for the incoming photon (and proton)?
(honestly i couldn't fully grasp how a proton plus energy made a neutron. Is the photon turning into a neutron, is the energy from the photon breaking the proton into a smaller proton and a neutron? Aren't all protons in this question assumed to have the same mass, in which case how would i get a smaller proton?
Don't worry about the conceptual details of the process here, just think of it as a "black box". As Orodruin noted, this specific process is impossible because it violates certain conservation laws even though you can make it satisfy conservation of energy and momentum. If it makes you feel better, rephrase the problem as "photon plus particle 1 goes to particle 2 plus particle 3", where particles 1, 2 and 3 are different particles that happen to have the same mass. OK?
The whole point of this problem is conservation of relativistic energy and relativistic momentum. Other details of the process are simply distractions.
im assuming it's like the binding energy, which i tink is basically what we're solving for,
There's no binding energy here. The photon and proton before the collision are not bound. The proton and neutron after the collision are not assumed to be bound. (We're not talking about deuterium here.)