MHB What is the Minimum Value of a Mathematical Function with Specific Constraints?

AI Thread Summary
The minimum value of the function $\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{a-c}$ under the constraint $(a-b)(b-c)(a-c)=17$ occurs when $a=\sqrt[3]{68}$. By transforming the variables, the problem simplifies to minimizing $S = \dfrac{1}{a-b} + \dfrac{1}{a} + \dfrac{1}{b}$ with the constraint reformulated as a quadratic in $b$. The discriminant condition for real solutions leads to $a \geq \sqrt[3]{68}$. Ultimately, the minimum value of $S$ is $\dfrac{5}{\sqrt[3]{68}}$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum of $\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{a-c}$ for real $a>b>c$ given $(a-b)(b-c)(a-c)=17$.
 
Mathematics news on Phys.org
anemone said:
Find the minimum of $\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{a-c}$ for real $a>b>c$ given $(a-b)(b-c)(a-c)=17$.
[sp]Since the problem only depends on the differences between the numbers, we may as well add $-c$ to each of them, so that $c$ becomes $0$.

Then we want to minimise $S \overset{\text{def}}{=} \dfrac1{a-b} + \dfrac1a + \dfrac1b$ subject to the constraint $ab(a-b) = 17.$

Write the constraint as $ab^2 - a^2b + 17 = 0$ and consider it as a quadratic in $b$. Its discriminant is $a^4 - 68a$, and this must be non-negative if there is to be a real solution for $b$. Therefore $a^3 - 68 \geqslant0$, or $a\geqslant \sqrt[3]{68}.$

Next, $S = \dfrac{ab + (a+b)(a-b)}{ab(a+b)} = \dfrac{a^2 + ab-b^2}{17} = \dfrac{a^2}{17} + \dfrac{a^2b - ab^2}{17a} = \dfrac{a^2}{17} + \dfrac1a.$ For $a>0$, this has its minimum value when $a = \sqrt[3]{17/2}.$ But that is less than $\sqrt[3]{68}.$ So the minimum value of $S$ occurs when $a=\sqrt[3]{68},$ and $S$ is then equal to $\dfrac5{\sqrt[3]{68}}.$[/sp]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top