MHB What is the Minimum Value of a Mathematical Function with Specific Constraints?

Click For Summary
The minimum value of the function $\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{a-c}$ under the constraint $(a-b)(b-c)(a-c)=17$ occurs when $a=\sqrt[3]{68}$. By transforming the variables, the problem simplifies to minimizing $S = \dfrac{1}{a-b} + \dfrac{1}{a} + \dfrac{1}{b}$ with the constraint reformulated as a quadratic in $b$. The discriminant condition for real solutions leads to $a \geq \sqrt[3]{68}$. Ultimately, the minimum value of $S$ is $\dfrac{5}{\sqrt[3]{68}}$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum of $\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{a-c}$ for real $a>b>c$ given $(a-b)(b-c)(a-c)=17$.
 
Mathematics news on Phys.org
anemone said:
Find the minimum of $\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{a-c}$ for real $a>b>c$ given $(a-b)(b-c)(a-c)=17$.
[sp]Since the problem only depends on the differences between the numbers, we may as well add $-c$ to each of them, so that $c$ becomes $0$.

Then we want to minimise $S \overset{\text{def}}{=} \dfrac1{a-b} + \dfrac1a + \dfrac1b$ subject to the constraint $ab(a-b) = 17.$

Write the constraint as $ab^2 - a^2b + 17 = 0$ and consider it as a quadratic in $b$. Its discriminant is $a^4 - 68a$, and this must be non-negative if there is to be a real solution for $b$. Therefore $a^3 - 68 \geqslant0$, or $a\geqslant \sqrt[3]{68}.$

Next, $S = \dfrac{ab + (a+b)(a-b)}{ab(a+b)} = \dfrac{a^2 + ab-b^2}{17} = \dfrac{a^2}{17} + \dfrac{a^2b - ab^2}{17a} = \dfrac{a^2}{17} + \dfrac1a.$ For $a>0$, this has its minimum value when $a = \sqrt[3]{17/2}.$ But that is less than $\sqrt[3]{68}.$ So the minimum value of $S$ occurs when $a=\sqrt[3]{68},$ and $S$ is then equal to $\dfrac5{\sqrt[3]{68}}.$[/sp]
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K