MHB What is the Minimum Value of a Mathematical Function with Specific Constraints?

Click For Summary
The minimum value of the function $\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{a-c}$ under the constraint $(a-b)(b-c)(a-c)=17$ occurs when $a=\sqrt[3]{68}$. By transforming the variables, the problem simplifies to minimizing $S = \dfrac{1}{a-b} + \dfrac{1}{a} + \dfrac{1}{b}$ with the constraint reformulated as a quadratic in $b$. The discriminant condition for real solutions leads to $a \geq \sqrt[3]{68}$. Ultimately, the minimum value of $S$ is $\dfrac{5}{\sqrt[3]{68}}$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum of $\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{a-c}$ for real $a>b>c$ given $(a-b)(b-c)(a-c)=17$.
 
Mathematics news on Phys.org
anemone said:
Find the minimum of $\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{a-c}$ for real $a>b>c$ given $(a-b)(b-c)(a-c)=17$.
[sp]Since the problem only depends on the differences between the numbers, we may as well add $-c$ to each of them, so that $c$ becomes $0$.

Then we want to minimise $S \overset{\text{def}}{=} \dfrac1{a-b} + \dfrac1a + \dfrac1b$ subject to the constraint $ab(a-b) = 17.$

Write the constraint as $ab^2 - a^2b + 17 = 0$ and consider it as a quadratic in $b$. Its discriminant is $a^4 - 68a$, and this must be non-negative if there is to be a real solution for $b$. Therefore $a^3 - 68 \geqslant0$, or $a\geqslant \sqrt[3]{68}.$

Next, $S = \dfrac{ab + (a+b)(a-b)}{ab(a+b)} = \dfrac{a^2 + ab-b^2}{17} = \dfrac{a^2}{17} + \dfrac{a^2b - ab^2}{17a} = \dfrac{a^2}{17} + \dfrac1a.$ For $a>0$, this has its minimum value when $a = \sqrt[3]{17/2}.$ But that is less than $\sqrt[3]{68}.$ So the minimum value of $S$ occurs when $a=\sqrt[3]{68},$ and $S$ is then equal to $\dfrac5{\sqrt[3]{68}}.$[/sp]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K