What Is the Minimum Value of $f$ with Given Conditions?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Minimum Value
Click For Summary
SUMMARY

The minimum value of the function \( f = \sqrt{a^2 + x^2} + \sqrt{b^2 + y^2} \) is determined under the constraints \( x + y = c \) and \( a, b, c, x, y \in \mathbb{R}^+ \). The discussion emphasizes a geometric approach to minimize \( f \) by analyzing the relationship between the variables. The solution involves optimizing the placement of points in a coordinate system to achieve the lowest possible value of \( f \). This method effectively utilizes the properties of Euclidean distances in the context of positive real numbers.

PREREQUISITES
  • Understanding of Euclidean geometry
  • Familiarity with optimization techniques
  • Knowledge of real-valued functions
  • Basic algebraic manipulation skills
NEXT STEPS
  • Explore geometric interpretations of optimization problems
  • Study the Cauchy-Schwarz inequality in the context of distance minimization
  • Learn about Lagrange multipliers for constrained optimization
  • Investigate applications of optimization in real-world scenarios
USEFUL FOR

Mathematicians, students studying optimization techniques, and anyone interested in applying geometric methods to solve mathematical problems.

Albert1
Messages
1,221
Reaction score
0
find minimum value of $f$
given :
$(1)a,b,c,x,y\in R^+$
$(2)x+y=c$
$(3)f=\sqrt {a^2+x^2}+\sqrt {b^2+y^2}$
find :$min (f)$
 
Mathematics news on Phys.org
My solution:

I use raw calculus (Lagrange optimzation) and I would be happy to see other approaches:

\[f(x,y) = \sqrt{a^2+x^2}+\sqrt{b^2+y^2}\]

The constraint: $g(x,y) = x+y -c = 0$

Solving for $x (>0)$:

\[\frac{\partial f}{\partial x}=-\lambda \frac{\partial g}{\partial x} = -\lambda \: \: \: \wedge \: \: \: \frac{\partial f}{\partial y}=-\lambda \frac{\partial g}{\partial y} = -\lambda\]

\[ \Rightarrow \frac{x}{\sqrt{a^2+x^2}} = \frac{y}{\sqrt{b^2+y^2}}=\frac{c-x}{\sqrt{b^2+(c-x)^2}}\]

\[ \Rightarrow x^2(b^2+(c-x)^2)=(c-x)^2(a^2+x^2)\]

\[ \Rightarrow (b^2-a^2)x^2+2a^2cx-a^2c^2=0\]

\[ \Rightarrow x = \frac{ac}{a+b} \Rightarrow y = c-x = \frac{bc}{a+b}\]

- and the minimum value of f is: $f_{min} = \sqrt{(a+b)^2+c^2}$.
 
Albert said:
find minimum value of $f$
given :
$(1)a,b,c,x,y\in R^+$
$(2)x+y=c$
$(3)f=\sqrt {a^2+x^2}+\sqrt {b^2+y^2}---(1)$
find :$min (f)$
using geometry
consturct $\triangle ACD,\angle A=90^o, \overline {AC}=a+b=\overline {AB}+\overline {BC}$
$\overline {DA}=c=\overline {DQ}+\overline {QA}=x+y$
point $P$ is an inner point of $\triangle ACD,\overline {PQ}=a=\overline {AB},$ and $\overline {PQ}\perp \overline{AD}$
$\overline {PB}=y=\overline {AQ},$ and $\overline {PB}\perp \overline{AC}$
we have $(1):f=\overline {CP}+\overline {PD}\geq\overline {CD}=\sqrt{(a+b)^2+c^2}$
equality holds when point $P $ locates on $\overline {CD}$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
510
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K