I What is the most efficient way to cool air using a Vortex Tube (Ranque-Hilsch)?

AI Thread Summary
The paper indicates that the initial separation of hot and cold air in a vortex tube is complete once the flow is deflected backward at the hot end, and further interaction between the streams is undesirable. This interaction leads to a degradation in performance, as the cooled air should ideally return to the cold end without mixing with the hot air. The cooling of the cold stream primarily occurs during the backward deflection, while subsequent interactions dilute its effectiveness. The discussion raises the question of whether alternative methods to extract cold air could minimize this interaction. Additionally, the concept of a double circuit vortex tube appears contradictory if cooling is indeed limited to the initial deflection phase.
Swamp Thing
Insights Author
Messages
1,028
Reaction score
763
Ref: https://s3.wp.wsu.edu/uploads/sites/44/2015/12/VortexTubeOptimizationTheory.pdf

The above paper says that the initial separation of hot and cold air is complete once the flow is partly deflected backwards at the left hand side (HOT) end. See Fig. 1 in the paper.

It also says that the further interaction of the two streams is actually undesirable, and that one would want that process to be like a "weak" or "bad" heat exchanger. So ideally we would want the cooled air (inner stream) to make its way back to the right hand side (COLD) end without any interaction with the outer stream.

So the process of returning the cold air to the right hand side, passing all the way through the tube, actually degrades the performance due to unwanted heat exchange between the inner and outer streams. This idea is elaborated in Fig. 3 of the paper.

My first question is -- is it true that the actual cooling of the cold stream happens entirely during the inward / backward deflection at the far end of the tube, and that all further interaction between the streams is merely an undesired dilution of performance?

Second question -- If the above is true, won't it be better to skim off the cold air in some other way that will keep it more isolated from the warm stream? For example:

1674214767061.jpeg


Or maybe like this:

1674214830497.jpeg
 
Physics news on Phys.org
Another point of confusion is that some papers talk about a "double circuit vortex tube". For example, Fig. 7 in this paper: https://uhra.herts.ac.uk/bitstream/..._for_Resubmission_Without_Mark.pdf?sequence=1

If the answer to my question #1 in the original post is yes, then the double circuit thing doesn't seem to make much sense. The double circuit concept would only make sense if the cooling happens during the interaction between the two streams along the tube.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top