- #1
pranj5
- 386
- 5
We all are more or less familiar with the performance of vortex tubes regarding how they can make hot and cold flow by pressurised and/or air/gas at high speed. What I am wondering is the performance of saturated steam inside vortex tube.
As for example, suppose we are using saturated steam at 100°C temperature and at 1 barA pressure in a vortex tube. The speed has been created by a high speed blower instead of compressing the saturated steam to get the forced vortex. Now, if the temperature of the colder flow will be at 80°C, then how much steam will be condensed?
For vortex tubes, the density and pressure of both the input and the output flows remains the same. That means, the flow coming out of the colder section at 80°C temperature and at the same pressure i.e. 1 barA; that will mean that around 54% of steam in the colder stream has lost their LHV. Just imagine such huge amount of enthalpy has been transferred to the hot flow and where its temperature will rise if all the enthalpy lost from the cold flow will be added to the hot flow.
That's why I want to know the behaviour of saturated steam inside a vortex tube, especially about the enthalpy distribution between the hot and the cold flow. I have searched net but haven't found even a paper on this matter and it seems that this subject need research and that may lead to some good heat pump mechanism in future.
As for example, suppose we are using saturated steam at 100°C temperature and at 1 barA pressure in a vortex tube. The speed has been created by a high speed blower instead of compressing the saturated steam to get the forced vortex. Now, if the temperature of the colder flow will be at 80°C, then how much steam will be condensed?
For vortex tubes, the density and pressure of both the input and the output flows remains the same. That means, the flow coming out of the colder section at 80°C temperature and at the same pressure i.e. 1 barA; that will mean that around 54% of steam in the colder stream has lost their LHV. Just imagine such huge amount of enthalpy has been transferred to the hot flow and where its temperature will rise if all the enthalpy lost from the cold flow will be added to the hot flow.
That's why I want to know the behaviour of saturated steam inside a vortex tube, especially about the enthalpy distribution between the hot and the cold flow. I have searched net but haven't found even a paper on this matter and it seems that this subject need research and that may lead to some good heat pump mechanism in future.
Last edited by a moderator: