Undergrad What is the name of this geometry theorem?

Click For Summary
The discussion centers on a geometry theorem related to the conditions under which a triangle can be formed given an angle and two sides, specifically under SSA (side-side-angle) conditions. It explains that if a side length (x) is equal to 10sin(30), exactly one triangle is formed; if x is greater, two triangles can exist; and if x is less, no triangle is formed. This scenario is identified as the ambiguous case of the law of sines. Participants express uncertainty about whether this concept has a formal name, but it is clarified that it relates to the law of sines. The conversation concludes with a focus on the implications of these conditions in triangle formation.
barryj
Messages
856
Reaction score
51
In geometry, there is a theorem pertaining to whether given an angle, side, and side gives 0, 1, or 2 triangles. See figure. In the figure, if x = 10sin(30) then there is exactly 1 triangle, if x > 10sin(30) then 2 triangles if x < 10sin(30) then no triangles. I think this has a theorem name or something that I can look up in a tggext book.

img439.jpg
 
Last edited by a moderator:
Mathematics news on Phys.org
I am not sure I get you. Your drawing is no triangle case, right ? Could you draw "2 triangles" case to confirm I get you properly.
 
Last edited by a moderator:
The condition for three sides, A, B, and C to make a triangle is that the sum of any two sides must be greater than the third side. Given an angle and two sides the question is will these form a triangle. There are three conditions depending on how long the "hanging" side is. In my diagram, the hanging side is x the other side is 10, and the angle is 30 deg. If x = 10sin(30) then there will be one right triangle. If x < 10sin(30) then there is no triangle, and if x > 10sin(30) then there will be two triangles. I guess there is not a theorem here, just a problem.
 
Thanks for explanation. Law of cosine
c^2=a^2+b^2-2ab \cos \gamma
Regarding this as quadratic equation of b
b^2-2a \cos \gamma \ b + a^2-c^2 = 0
D/4= (a \cos \gamma)^2 - a^2 + c^2 = ( c- a \sin \gamma )( c + a \sin \gamma)
##a \sin \gamma < c## : b has two real solutions with ##\alpha_1<\frac{\pi}{2}<\alpha_2##
##a \sin \gamma = c## : b has one real solution with ##\alpha=\frac{\pi}{2}##
##a \sin \gamma > c## : b has no real solution

I do not know whether this feature has a specific name or not.
 
Last edited:
  • Like
Likes mathwonk and Lnewqban
barryj said:
In geometry, there is a theorem pertaining to whether given an angle, side, and side gives 0, 1, or 2 triangles. See figure. In the figure, if x = 10sin(30) then there is exactly 1 triangle, if x > 10sin(30) then 2 triangles if x < 10sin(30) then no triangles. I think this has a theorem name or something that I can look up in a tggext book.
I think it is called the law of Sines, since you are given SSA conditions on the triangle. This case is called the ambiguous case because there could be 0,1, 2 triangles.

cbarker1
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 38 ·
2
Replies
38
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
10K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
977
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K