MHB What is the positive integer $n$ with a special property?

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integer Proof
AI Thread Summary
The positive integer \( n \) has the property that removing its last three digits yields \( \sqrt[3]{n} \). By letting \( x = \sqrt[3]{n} \), the equation \( n = x^3 = 1000x + k \) is established, where \( k \) represents the last three digits of \( n \). This leads to the condition \( x(x^2 - 1000) = k \), indicating \( x^2 > 1000 \) and thus \( x \geq 32 \). The only feasible integer value for \( x \) is 32, resulting in \( n = 32^3 = 32,768 \), which satisfies the original property. Therefore, the integer \( n \) is 32,768.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
$n$ is a positive integer with the following property:

If the last three digits of $n$ are removed, $\sqrt[3]{n}$ remains.

Find with proof $n$.

Source: Nordic Math. Contest
 
Mathematics news on Phys.org
lfdahl said:
$n$ is a positive integer with the following property:

If the last three digits of $n$ are removed, $\sqrt[3]{n}$ remains.

Find with proof $n$.

Source: Nordic Math. Contest
[sp]Let $x = \sqrt[3]n$. We are told that $x^3 = n = 1000x + k$ (where $k$ is the number formed by the last three digits of $n$). Therefore $$x(x^2 - 1000) = k.$$ This implies that $x^2>1000$, and so $x\geqslant32$. But if $x = 33$ then $x^2 = 1089$ and $x(x^2-1000) = 33\times89 = 2937$, which is too big because $k$ must only have three digits.

So $32\leqslant x<33$, and the only possible value for $x$ is $32$. Then $n = 32^3 = 32\,768$. When the last three digits are removed, what is left is $32$, as required.

[/sp]
 
Opalg said:
[sp]Let $x = \sqrt[3]n$. We are told that $x^3 = n = 1000x + k$ (where $k$ is the number formed by the last three digits of $n$). Therefore $$x(x^2 - 1000) = k.$$ This implies that $x^2>1000$, and so $x\geqslant32$. But if $x = 33$ then $x^2 = 1089$ and $x(x^2-1000) = 33\times89 = 2937$, which is too big because $k$ must only have three digits.

So $32\leqslant x<33$, and the only possible value for $x$ is $32$. Then $n = 32^3 = 32\,768$. When the last three digits are removed, what is left is $32$, as required.

[/sp]

Thankyou, Opalg, for an exemplary answer!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top