MHB What is the positive integer $n$ with a special property?

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integer Proof
Click For Summary
The positive integer \( n \) has the property that removing its last three digits yields \( \sqrt[3]{n} \). By letting \( x = \sqrt[3]{n} \), the equation \( n = x^3 = 1000x + k \) is established, where \( k \) represents the last three digits of \( n \). This leads to the condition \( x(x^2 - 1000) = k \), indicating \( x^2 > 1000 \) and thus \( x \geq 32 \). The only feasible integer value for \( x \) is 32, resulting in \( n = 32^3 = 32,768 \), which satisfies the original property. Therefore, the integer \( n \) is 32,768.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
$n$ is a positive integer with the following property:

If the last three digits of $n$ are removed, $\sqrt[3]{n}$ remains.

Find with proof $n$.

Source: Nordic Math. Contest
 
Mathematics news on Phys.org
lfdahl said:
$n$ is a positive integer with the following property:

If the last three digits of $n$ are removed, $\sqrt[3]{n}$ remains.

Find with proof $n$.

Source: Nordic Math. Contest
[sp]Let $x = \sqrt[3]n$. We are told that $x^3 = n = 1000x + k$ (where $k$ is the number formed by the last three digits of $n$). Therefore $$x(x^2 - 1000) = k.$$ This implies that $x^2>1000$, and so $x\geqslant32$. But if $x = 33$ then $x^2 = 1089$ and $x(x^2-1000) = 33\times89 = 2937$, which is too big because $k$ must only have three digits.

So $32\leqslant x<33$, and the only possible value for $x$ is $32$. Then $n = 32^3 = 32\,768$. When the last three digits are removed, what is left is $32$, as required.

[/sp]
 
Opalg said:
[sp]Let $x = \sqrt[3]n$. We are told that $x^3 = n = 1000x + k$ (where $k$ is the number formed by the last three digits of $n$). Therefore $$x(x^2 - 1000) = k.$$ This implies that $x^2>1000$, and so $x\geqslant32$. But if $x = 33$ then $x^2 = 1089$ and $x(x^2-1000) = 33\times89 = 2937$, which is too big because $k$ must only have three digits.

So $32\leqslant x<33$, and the only possible value for $x$ is $32$. Then $n = 32^3 = 32\,768$. When the last three digits are removed, what is left is $32$, as required.

[/sp]

Thankyou, Opalg, for an exemplary answer!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
20
Views
3K