MHB What is the positive integer $n$ with a special property?

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integer Proof
AI Thread Summary
The positive integer \( n \) has the property that removing its last three digits yields \( \sqrt[3]{n} \). By letting \( x = \sqrt[3]{n} \), the equation \( n = x^3 = 1000x + k \) is established, where \( k \) represents the last three digits of \( n \). This leads to the condition \( x(x^2 - 1000) = k \), indicating \( x^2 > 1000 \) and thus \( x \geq 32 \). The only feasible integer value for \( x \) is 32, resulting in \( n = 32^3 = 32,768 \), which satisfies the original property. Therefore, the integer \( n \) is 32,768.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
$n$ is a positive integer with the following property:

If the last three digits of $n$ are removed, $\sqrt[3]{n}$ remains.

Find with proof $n$.

Source: Nordic Math. Contest
 
Mathematics news on Phys.org
lfdahl said:
$n$ is a positive integer with the following property:

If the last three digits of $n$ are removed, $\sqrt[3]{n}$ remains.

Find with proof $n$.

Source: Nordic Math. Contest
[sp]Let $x = \sqrt[3]n$. We are told that $x^3 = n = 1000x + k$ (where $k$ is the number formed by the last three digits of $n$). Therefore $$x(x^2 - 1000) = k.$$ This implies that $x^2>1000$, and so $x\geqslant32$. But if $x = 33$ then $x^2 = 1089$ and $x(x^2-1000) = 33\times89 = 2937$, which is too big because $k$ must only have three digits.

So $32\leqslant x<33$, and the only possible value for $x$ is $32$. Then $n = 32^3 = 32\,768$. When the last three digits are removed, what is left is $32$, as required.

[/sp]
 
Opalg said:
[sp]Let $x = \sqrt[3]n$. We are told that $x^3 = n = 1000x + k$ (where $k$ is the number formed by the last three digits of $n$). Therefore $$x(x^2 - 1000) = k.$$ This implies that $x^2>1000$, and so $x\geqslant32$. But if $x = 33$ then $x^2 = 1089$ and $x(x^2-1000) = 33\times89 = 2937$, which is too big because $k$ must only have three digits.

So $32\leqslant x<33$, and the only possible value for $x$ is $32$. Then $n = 32^3 = 32\,768$. When the last three digits are removed, what is left is $32$, as required.

[/sp]

Thankyou, Opalg, for an exemplary answer!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top