What is the Probability of Getting an Even Number of Heads with an Unfair Coin?

  • Context: MHB 
  • Thread starter Thread starter veronica1999
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around calculating the probability of obtaining an even number of heads when tossing an unfair coin with a probability of 2/3 for heads over 50 tosses. Participants explore various mathematical approaches, including the binomial probability formula and summation techniques, while addressing the complexities involved in the calculations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents an initial attempt to calculate the probability using a summation of binomial coefficients but encounters difficulties with the calculations.
  • Another participant reiterates the need for the binomial probability formula and provides a specific summation for calculating the probability of getting an even number of heads.
  • Some participants suggest using technology for approximations, while others express a desire to avoid such methods and rely on theoretical reasoning.
  • A later reply proposes a reformulation of the probability expressions and derives a relationship between the probabilities of even and odd outcomes, leading to a final expression for the probability of getting an even number of heads.
  • One participant generalizes the problem by introducing a variable probability for heads and a general number of tosses, deriving a formula applicable to this broader scenario.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method for calculating the probability, with multiple approaches and interpretations presented. There is also uncertainty regarding the use of technology versus theoretical methods.

Contextual Notes

Some participants express confusion over the calculations and the assumptions involved in the binomial probability framework. The discussion includes various mathematical steps that remain unresolved, particularly in the context of approximations and the implications of using technology.

veronica1999
Messages
61
Reaction score
0
An "unfair" coin has a 2/3 probability of turning up heads. If this coin is tossed 50 times, what is the probability that the total number of heads is even?

I set up an equation but I am having trouble with the calculation.

50C0 X (2/3)^0 X (1/3)^50 + 50C2 X (2/3)^2 X (1/3)^48 +... 50C50 (2/3)^50X(1/3)^0

I tried splitting it up thinking of the sigma notation.

(2/3)^0 + (2/3)^2 .....+ (2/3)^50 = { 1- (4/9)^25} / (1- 4/9) (1/3)^0 ..... + (1/3)^50 = { 1- (1/9)^25}/ (1-1/9)

It doesn't seem to work...:confused:
 
Physics news on Phys.org
Re: coins

As you have realized, we need the binomial probability formula:

$\displaystyle P(x)={n \choose x}p^x(1-p)^{n-x}$

Identifying:

$\displaystyle n=50$

$\displaystyle p=\frac{2}{3}$

we then need to compute:

$\displaystyle P(X)=\sum_{k=0}^{25}P(2k)=\sum_{k=0}^{25}\left[{50 \choose 2k}\left(\frac{2}{3} \right)^{2k}\left(\frac{1}{3} \right)^{50-2k} \right]$

Relying on technology, we find:

$\displaystyle P(X)=\frac{358948993845926294385125}{717897987691852588770249}\approx0.5$

Can you think of a way to obtain the approximation from the binomial theorem and the complementation rule?
 
Re: coins

MarkFL said:
As you have realized, we need the binomial probability formula:

$\displaystyle P(x)={n \choose x}p^x(1-p)^{n-x}$

Identifying:

$\displaystyle n=50$

$\displaystyle p=\frac{2}{3}$

we then need to compute:

$\displaystyle P(X)=\sum_{k=0}^{25}P(2k)=\sum_{k=0}^{25}\left[{50 \choose 2k}\left(\frac{2}{3} \right)^{2k}\left(\frac{1}{3} \right)^{50-2k} \right]$

Relying on technology, we find:

$\displaystyle P(X)=\frac{358948993845926294385125}{717897987691852588770249}\approx0.5$

Can you think of a way to obtain the approximation from the binomial theorem and the complementation rule?

There is i/2 and 1/2( 1+ 1/3^50) in the answer choices. Which one would be the answer?
i am trying to work backwards from the answer.

oops, i see the second one is the answer :o
 
Last edited:
Re: coins

I see we aren't meant to either use technology, or use an approximation.

Intuition tells us that since there are 26 favorable outcomes and 25 unfavorable that the probability will be slightly greater than 1/2. But how much greater?

Perhaps if we rewrite the sum:

$\displaystyle P(X)=\frac{1}{3^{50}}\sum_{k=0}^{25}\left[{50 \choose 2k}2^{2k} \right]$

Now, let's let Y be the event of getting an odd number of heads, and write:

$\displaystyle P(X)-P(Y)=\delta$

$\displaystyle \frac{1}{3^{50}}\sum_{k=0}^{25}\left[{50 \choose 2k}2^{2k} \right]-\frac{1}{3^{50}}\sum_{k=0}^{24}\left[{50 \choose 2k+1}2^{2k+1} \right]=\delta$

$\displaystyle 3^{50}\delta=\sum_{k=0}^{50}\left[{50 \choose k}2^{k}(-1)^{50-k}\right]$

By the binomial theorem, we have:

$\displaystyle 3^{50}\delta=(2-1)^{50}=1$

and so:

$\displaystyle \delta=\frac{1}{3^{50}}$

Hence:

$\displaystyle P(X)-P(Y)=\frac{1}{3^{50}}$

$\displaystyle P(X)+P(Y)=1$

Adding, we find:

$\displaystyle 2P(X)=1+\frac{1}{3^{50}}$

and so finally, we have:

$\displaystyle P(X)=\frac{1}{2}\left(1+\frac{1}{3^{50}} \right)$
 
Re: coins

MarkFL said:
I see we aren't meant to either use technology, or use an approximation.

Intuition tells us that since there are 26 favorable outcomes and 25 unfavorable that the probability will be slightly greater than 1/2. But how much greater?

Perhaps if we rewrite the sum:

$\displaystyle P(X)=\frac{1}{3^{50}}\sum_{k=0}^{25}\left[{50 \choose 2k}2^{2k} \right]$

Now, let's let Y be the event of getting an odd number of heads, and write:

$\displaystyle P(X)-P(Y)=\delta$

$\displaystyle \frac{1}{3^{50}}\sum_{k=0}^{25}\left[{50 \choose 2k}2^{2k} \right]-\frac{1}{3^{50}}\sum_{k=0}^{24}\left[{50 \choose 2k+1}2^{2k+1} \right]=\delta$

$\displaystyle 3^{50}\delta=\sum_{k=0}^{50}\left[{50 \choose k}2^{k}(-1)^{50-k}\right]$

By the binomial theorem, we have:

$\displaystyle 3^{50}\delta=(2-1)^{50}=1$

and so:

$\displaystyle \delta=\frac{1}{3^{50}}$

Hence:

$\displaystyle P(X)-P(Y)=\frac{1}{3^{50}}$

$\displaystyle P(X)+P(Y)=1$

Adding, we find:

$\displaystyle 2P(X)=1+\frac{1}{3^{50}}$

and so finally, we have:

$\displaystyle P(X)=\frac{1}{2}\left(1+\frac{1}{3^{50}} \right)$
Thanks!
Now it is absolutely clear.:D
 
I found this problem quite interesting and thought about it while I was out and so wanted to generalize a bit and cut out some of the unnecessary hand-waving...

Let's say the probability of getting a heads is $\displaystyle p$ and we flip the coin $\displaystyle 2n$ times where $\displaystyle n\in\mathbb{N}$. What is the probability that the total number of heads is even?

Let $\displaystyle P(X)$ be the probability that the total number of heads is even and $\displaystyle P(Y)$ be the probability that the total number of heads is odd.

$\displaystyle P(X)+P(Y)=1$

$\displaystyle P(X)-P(Y)=\sum_{k=0}^{2n}\left[{2n \choose k}p^{2n-k}(p-1)^k \right]=(2p-1)^{2n}$

Adding, we find:

$\displaystyle 2P(X)=1+(2p-1)^{2n}$

$\displaystyle P(X)=\frac{1}{2}\left(1+(2p-1)^{2n} \right)$
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
8K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
2K
  • · Replies 126 ·
5
Replies
126
Views
9K
  • · Replies 8 ·
Replies
8
Views
3K