MHB What is the Probability of Getting an Even Number of Heads with an Unfair Coin?

  • Thread starter Thread starter veronica1999
  • Start date Start date
AI Thread Summary
The discussion focuses on calculating the probability of obtaining an even number of heads when tossing an unfair coin with a 2/3 chance of heads, over 50 tosses. The binomial probability formula is applied, leading to the conclusion that the probability of getting an even number of heads is approximately 0.5. The participants explore various mathematical approaches, including the use of the binomial theorem and complementation rule, to derive the formula for the probability. Ultimately, the probability is expressed as P(X) = 1/2(1 + 1/3^50), indicating it is slightly greater than 1/2 due to the nature of the coin. The problem is recognized as interesting and prompts further generalization for different probabilities.
veronica1999
Messages
61
Reaction score
0
An "unfair" coin has a 2/3 probability of turning up heads. If this coin is tossed 50 times, what is the probability that the total number of heads is even?

I set up an equation but I am having trouble with the calculation.

50C0 X (2/3)^0 X (1/3)^50 + 50C2 X (2/3)^2 X (1/3)^48 +... 50C50 (2/3)^50X(1/3)^0

I tried splitting it up thinking of the sigma notation.

(2/3)^0 + (2/3)^2 .....+ (2/3)^50 = { 1- (4/9)^25} / (1- 4/9) (1/3)^0 ..... + (1/3)^50 = { 1- (1/9)^25}/ (1-1/9)

It doesn't seem to work...:confused:
 
Mathematics news on Phys.org
Re: coins

As you have realized, we need the binomial probability formula:

$\displaystyle P(x)={n \choose x}p^x(1-p)^{n-x}$

Identifying:

$\displaystyle n=50$

$\displaystyle p=\frac{2}{3}$

we then need to compute:

$\displaystyle P(X)=\sum_{k=0}^{25}P(2k)=\sum_{k=0}^{25}\left[{50 \choose 2k}\left(\frac{2}{3} \right)^{2k}\left(\frac{1}{3} \right)^{50-2k} \right]$

Relying on technology, we find:

$\displaystyle P(X)=\frac{358948993845926294385125}{717897987691852588770249}\approx0.5$

Can you think of a way to obtain the approximation from the binomial theorem and the complementation rule?
 
Re: coins

MarkFL said:
As you have realized, we need the binomial probability formula:

$\displaystyle P(x)={n \choose x}p^x(1-p)^{n-x}$

Identifying:

$\displaystyle n=50$

$\displaystyle p=\frac{2}{3}$

we then need to compute:

$\displaystyle P(X)=\sum_{k=0}^{25}P(2k)=\sum_{k=0}^{25}\left[{50 \choose 2k}\left(\frac{2}{3} \right)^{2k}\left(\frac{1}{3} \right)^{50-2k} \right]$

Relying on technology, we find:

$\displaystyle P(X)=\frac{358948993845926294385125}{717897987691852588770249}\approx0.5$

Can you think of a way to obtain the approximation from the binomial theorem and the complementation rule?

There is i/2 and 1/2( 1+ 1/3^50) in the answer choices. Which one would be the answer?
i am trying to work backwards from the answer.

oops, i see the second one is the answer :o
 
Last edited:
Re: coins

I see we aren't meant to either use technology, or use an approximation.

Intuition tells us that since there are 26 favorable outcomes and 25 unfavorable that the probability will be slightly greater than 1/2. But how much greater?

Perhaps if we rewrite the sum:

$\displaystyle P(X)=\frac{1}{3^{50}}\sum_{k=0}^{25}\left[{50 \choose 2k}2^{2k} \right]$

Now, let's let Y be the event of getting an odd number of heads, and write:

$\displaystyle P(X)-P(Y)=\delta$

$\displaystyle \frac{1}{3^{50}}\sum_{k=0}^{25}\left[{50 \choose 2k}2^{2k} \right]-\frac{1}{3^{50}}\sum_{k=0}^{24}\left[{50 \choose 2k+1}2^{2k+1} \right]=\delta$

$\displaystyle 3^{50}\delta=\sum_{k=0}^{50}\left[{50 \choose k}2^{k}(-1)^{50-k}\right]$

By the binomial theorem, we have:

$\displaystyle 3^{50}\delta=(2-1)^{50}=1$

and so:

$\displaystyle \delta=\frac{1}{3^{50}}$

Hence:

$\displaystyle P(X)-P(Y)=\frac{1}{3^{50}}$

$\displaystyle P(X)+P(Y)=1$

Adding, we find:

$\displaystyle 2P(X)=1+\frac{1}{3^{50}}$

and so finally, we have:

$\displaystyle P(X)=\frac{1}{2}\left(1+\frac{1}{3^{50}} \right)$
 
Re: coins

MarkFL said:
I see we aren't meant to either use technology, or use an approximation.

Intuition tells us that since there are 26 favorable outcomes and 25 unfavorable that the probability will be slightly greater than 1/2. But how much greater?

Perhaps if we rewrite the sum:

$\displaystyle P(X)=\frac{1}{3^{50}}\sum_{k=0}^{25}\left[{50 \choose 2k}2^{2k} \right]$

Now, let's let Y be the event of getting an odd number of heads, and write:

$\displaystyle P(X)-P(Y)=\delta$

$\displaystyle \frac{1}{3^{50}}\sum_{k=0}^{25}\left[{50 \choose 2k}2^{2k} \right]-\frac{1}{3^{50}}\sum_{k=0}^{24}\left[{50 \choose 2k+1}2^{2k+1} \right]=\delta$

$\displaystyle 3^{50}\delta=\sum_{k=0}^{50}\left[{50 \choose k}2^{k}(-1)^{50-k}\right]$

By the binomial theorem, we have:

$\displaystyle 3^{50}\delta=(2-1)^{50}=1$

and so:

$\displaystyle \delta=\frac{1}{3^{50}}$

Hence:

$\displaystyle P(X)-P(Y)=\frac{1}{3^{50}}$

$\displaystyle P(X)+P(Y)=1$

Adding, we find:

$\displaystyle 2P(X)=1+\frac{1}{3^{50}}$

and so finally, we have:

$\displaystyle P(X)=\frac{1}{2}\left(1+\frac{1}{3^{50}} \right)$
Thanks!
Now it is absolutely clear.:D
 
I found this problem quite interesting and thought about it while I was out and so wanted to generalize a bit and cut out some of the unnecessary hand-waving...

Let's say the probability of getting a heads is $\displaystyle p$ and we flip the coin $\displaystyle 2n$ times where $\displaystyle n\in\mathbb{N}$. What is the probability that the total number of heads is even?

Let $\displaystyle P(X)$ be the probability that the total number of heads is even and $\displaystyle P(Y)$ be the probability that the total number of heads is odd.

$\displaystyle P(X)+P(Y)=1$

$\displaystyle P(X)-P(Y)=\sum_{k=0}^{2n}\left[{2n \choose k}p^{2n-k}(p-1)^k \right]=(2p-1)^{2n}$

Adding, we find:

$\displaystyle 2P(X)=1+(2p-1)^{2n}$

$\displaystyle P(X)=\frac{1}{2}\left(1+(2p-1)^{2n} \right)$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top