MHB What is the problem in this Proof

  • Thread starter Thread starter Amer
  • Start date Start date
  • Tags Tags
    Proof
Amer
Messages
259
Reaction score
0
In your point of view what is the problem in this Proof
Claim any two natural a,b are equal
By induction
Let m= max{a,b}
if m=1 then a=b=1 since a,b natural
suppose it is hold for m=k
if
max{a,b} = k then a=b
test if
max{a,b} = k+1 , sub 1
max{a-1,b-1} = k which is the previous so a-1 = b-1 , a=b

I saw it in facebook
 
Physics news on Phys.org
Amer said:
In your point of view what is the problem in this Proof
Claim any two natural a,b are equal
By induction
Let m= max{a,b}
if m=1 then a=b=1 since a,b natural
suppose it is hold for m=k
if
max{a,b} = k then a=b
test if
max{a,b} = k+1 , sub 1
max{a-1,b-1} = k which is the previous so a-1 = b-1 , a=b

I saw it in facebook

I saw it on math.stackexchange too. The problem is that $\max{(a, b)} = k ~ \implies ~ a = b$ is clearly wrong, and the proof was designed to hide this fact. For instance, $\max{(5, 7)} = 7$, but last time I checked we had $5 \ne 7$.

In essence, this "proof" doesn't show that all natural numbers are equal, it shows that any two equal natural numbers are equal ;)​
 
Bacterius said:
The problem is that $\max{(a, b)} = k ~ \implies ~ a = b$ is clearly wrong, and the proof was designed to hide this fact. For instance, $\max{(5, 7)} = 7$, but last time I checked we had $5 \ne 7$.
But this does not explain which proof step in particular is wrong. Of course the implication max(a, b) = k ⇒ a = b is false, just like the original claim that a = b for all a, b. But the proof claims to show just that, and the question is where the mistake in the proof is located.
 
Amer said:
In your point of view what is the problem in this Proof
Claim any two natural a,b are equal
By induction
Let m= max{a,b}
if m=1 then a=b=1 since a,b natural
suppose it is hold for m=k
if
max{a,b} = k then a=b
test if
max{a,b} = k+1 , sub 1
max{a-1,b-1} = k which is the previous so a-1 = b-1 , a=b

I saw it in facebook

The proof goes wrong in the last two sentences.

We have max{a,b}=k+1

Now we have max{a-1,b-1}=k.

We now want to apply the induction hypothesis here to have a-1=b-1 and thus a=b. But we can't do this. This is because we are not sure if a-1 and b-1 are natural numbers. We can very well have one of a-1 and b-1 equal to 0.

So this is the problem in the proof.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Back
Top