MHB What is the problem in this Proof

  • Thread starter Thread starter Amer
  • Start date Start date
  • Tags Tags
    Proof
Click For Summary
The proof claiming that any two natural numbers a and b are equal is fundamentally flawed due to the incorrect assumption that if max{a, b} = k, then a must equal b. The induction step fails because it relies on applying the hypothesis to a-1 and b-1 without confirming they remain natural numbers, as one could be zero. This oversight leads to the erroneous conclusion that all natural numbers are equal. The critical error occurs in the transition from max{a, b} = k+1 to max{a-1, b-1} = k, where the assumption about the nature of a-1 and b-1 is not validated. Ultimately, the proof does not hold, as it misrepresents the properties of natural numbers.
Amer
Messages
259
Reaction score
0
In your point of view what is the problem in this Proof
Claim any two natural a,b are equal
By induction
Let m= max{a,b}
if m=1 then a=b=1 since a,b natural
suppose it is hold for m=k
if
max{a,b} = k then a=b
test if
max{a,b} = k+1 , sub 1
max{a-1,b-1} = k which is the previous so a-1 = b-1 , a=b

I saw it in facebook
 
Physics news on Phys.org
Amer said:
In your point of view what is the problem in this Proof
Claim any two natural a,b are equal
By induction
Let m= max{a,b}
if m=1 then a=b=1 since a,b natural
suppose it is hold for m=k
if
max{a,b} = k then a=b
test if
max{a,b} = k+1 , sub 1
max{a-1,b-1} = k which is the previous so a-1 = b-1 , a=b

I saw it in facebook

I saw it on math.stackexchange too. The problem is that $\max{(a, b)} = k ~ \implies ~ a = b$ is clearly wrong, and the proof was designed to hide this fact. For instance, $\max{(5, 7)} = 7$, but last time I checked we had $5 \ne 7$.

In essence, this "proof" doesn't show that all natural numbers are equal, it shows that any two equal natural numbers are equal ;)​
 
Bacterius said:
The problem is that $\max{(a, b)} = k ~ \implies ~ a = b$ is clearly wrong, and the proof was designed to hide this fact. For instance, $\max{(5, 7)} = 7$, but last time I checked we had $5 \ne 7$.
But this does not explain which proof step in particular is wrong. Of course the implication max(a, b) = k ⇒ a = b is false, just like the original claim that a = b for all a, b. But the proof claims to show just that, and the question is where the mistake in the proof is located.
 
Amer said:
In your point of view what is the problem in this Proof
Claim any two natural a,b are equal
By induction
Let m= max{a,b}
if m=1 then a=b=1 since a,b natural
suppose it is hold for m=k
if
max{a,b} = k then a=b
test if
max{a,b} = k+1 , sub 1
max{a-1,b-1} = k which is the previous so a-1 = b-1 , a=b

I saw it in facebook

The proof goes wrong in the last two sentences.

We have max{a,b}=k+1

Now we have max{a-1,b-1}=k.

We now want to apply the induction hypothesis here to have a-1=b-1 and thus a=b. But we can't do this. This is because we are not sure if a-1 and b-1 are natural numbers. We can very well have one of a-1 and b-1 equal to 0.

So this is the problem in the proof.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K