MHB What is the Radius of Convergence for a Series with a Real Non-Zero Alpha?

Click For Summary
The discussion focuses on determining the radius of convergence for the series defined by f(z) = 1 + Σ(α(α-1)...(α-n+1)z^n/n!). Participants suggest using the Ratio Test, which yields a radius of convergence R = 1 for non-integer values of α. However, if α is a positive integer, the series terminates, resulting in an infinite radius of convergence. The conversation highlights that the value of α significantly influences the series' behavior, particularly regarding convergence. Ultimately, the radius of convergence varies based on whether α is a positive integer or a negative integer.
aruwin
Messages
204
Reaction score
0
Hello.

How do I find the radius of convergence for this problem?
$\alpha$ is a real number that is not 0.

$$f(z)=1+\sum_{n=1}^{\infty}\alpha(\alpha-1)...(\alpha-n+1)\frac{z^n}{n!}$$
 
Physics news on Phys.org
aruwin said:
Hello.

How do I find the radius of convergence for this problem?
$\alpha$ is a real number that is not 0.

$$f(z)=1+\sum_{n=1}^{\infty}\alpha(\alpha-1)...(\alpha-n+1)\frac{z^n}{n!}$$

Have you tried using the Ratio Test?
 
Prove It said:
Have you tried using the Ratio Test?

Before that, does the value of $\alpha$ matter? I mean, no matter if it's positive or negative, would it affect the radius of convergence?
I understand that we can use the ratio test to find R. And by using ratio test, I got R=1. But in the answer, it also says that if α is a positive real number, then this series terminates.
==> The radius of convergence is ∞.
 
Last edited:
Prove It said:
Have you tried using the Ratio Test?
If α is a positive integer, the ratio test doesn't apply because the series isn't infinite.

Consider the example α = 4. The coefficient of z^5 would be

4(4 - 1)(4 - 2)(4 - 3)(4 - 4)/5! = 0

Every coefficient after that would also be zero. So, does that mean the ratio test can only be used when α is a NEGATIVE INTEGER? What happens to the radius of convergence when alpha is a positive integer?

By the way, the ratio test gives me R= 1.
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K