MHB What is the Radius of Convergence for the Power Series?

Julio1
Messages
66
Reaction score
0
Find the radius of convergence of the power series $\displaystyle\sum_{n=1}^{\infty}\dfrac{(-1)^{n+1}(z-1)^n}{n+1}$, $z\in \mathbb{C}.$
Hello !, get as ratio this: $R=\dfrac{1}{|z-1|}.$ And this is equal?
 
Physics news on Phys.org
Julio said:
Find the ratio of convergence of the power series $\displaystyle\sum_{n=1}^{\infty}\dfrac{(-1)^{n+1}(z-1)^n}{n+1}$, $z\in \mathbb{C}.$
Hello !, get as ratio this: $R=\dfrac{1}{|z-1|}.$ And this is equal?

First of all, you are finding a RADIUS of convergence using the ratio test.

You need to set the ratio of the absolute value of two consecutive terms less than 1, and then solve for z.

You are close...
 
Julio said:
Find the radius of convergence of the power series $\displaystyle\sum_{n=1}^{\infty}\dfrac{(-1)^{n+1}(z-1)^n}{n+1}$, $z\in \mathbb{C}.$
Hello !, get as ratio this: $R=\dfrac{1}{|z-1|}.$ And this is equal?

Setting s= z-1 the series becomes...

$\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n+1}\ s^{n}}{n+1}\ (1)$

... and applying the ratio test You can verify that is R=1...

Kind regards

$\chi$ $\sigma$
 

Similar threads

Replies
3
Views
3K
Replies
17
Views
5K
Replies
5
Views
2K
Replies
9
Views
991
Replies
3
Views
1K
Back
Top