MHB What is the ratio of complex numbers in the form of a question?

Guest2
Messages
192
Reaction score
0
What's the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ equal to? I can't work it out to anything I recognize. :confused:

The answer is $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$. I suppose I could work backwards from the answer, but I won't have the answer in the exam.
 
Mathematics news on Phys.org
See how far you can get using $$\sin(x)=\dfrac{e^{ix}-e^{-ix}}{2i}$$ and $$\cos(x)=\dfrac{e^{ix}+e^{-ix}}{2}$$.
 
Guest said:
What's the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ equal to? I can't work it out to anything I recognize. :confused:

The answer is $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$. I suppose I could work backwards from the answer, but I won't have the answer in the exam.

$\displaystyle \begin{align*} \frac{\mathrm{e}^{\mathrm{i}\,\sqrt{x}}-1}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} &= \frac{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1 - 2}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} \\ &= 1 - \frac{2}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} \\ &= 1 - \frac{2}{1 + \cos{ \left( \sqrt{x} \right) } + \mathrm{i} \sin{\left( \sqrt{x} \right) }} \\ &= 1 - \frac{2\,\left[ 1 + \cos{ \left( \sqrt{x} \right) } - \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] }{\left[ 1 + \cos{\left( \sqrt{x} \right) } + \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] \left[ 1 + \cos{ \left( \sqrt{x} \right) } - \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right)
} - 2\,\mathrm{i} \sin{ \left( \sqrt{x} \right) } }{ \left[ 1 + \cos{ \left( \sqrt{x} \right) } \right] ^2 + \sin^2{ \left( \sqrt{x} \right) } } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right) } - 2\,\mathrm{i}\sin{\left( \sqrt{x} \right) }}{1 + 2\cos{ \left( \sqrt{x} \right) } + \cos^2{ \left( \sqrt{x} \right) } + \sin^2{ \left( \sqrt{x} \right) } } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right) } - 2\,\mathrm{i}\sin{\left( \sqrt{x} \right) }}{2 + 2\cos{\left( \sqrt{x} \right) }} \\ &= 1 - \left[ 1 - \frac{2\,\mathrm{i}\sin{\left( \sqrt{x} \right) } }{2\,\left[ 1 + \cos{\left( \sqrt{x} \right) } \right] } \right] \\ &= \mathrm{i}\,\left[ \frac{\sin{\left( \sqrt{x} \right) }}{1 + \cos{ \left( \sqrt{x} \right) } } \right] \\ &= \mathrm{i}\,\left[ \frac{2\sin{\left( \frac{\sqrt{x}}{2} \right) } \cos{\left( \frac{\sqrt{x}}{2} \right) }}{1 + 2\cos^2{\left( \frac{\sqrt{x}}{2} \right) } - 1 } \right] \\ &= \mathrm{i}\,\left[ \frac{2\sin{\left( \frac{\sqrt{x}}{2} \right) }\cos{\left( \frac{\sqrt{x}}{2}\right) }}{2\cos^2{\left( \frac{\sqrt{x}}{2} \right) }} \right] \\ &= \mathrm{i}\tan{ \left( \frac{\sqrt{x}}{2} \right) } \end{align*}$
 
$$\dfrac{e^{i\sqrt x}-1}{e^{i\sqrt x}+1}=\dfrac{e^{i\sqrt x/2}-e^{-i\sqrt x/2}}{e^{i\sqrt x/2}+e^{-i\sqrt x/2}}=i\dfrac{\sin\dfrac{\sqrt x}{2}}{\cos\dfrac{\sqrt x}{2}}=i\tan\dfrac{\sqrt x}{2}$$
 
Thanks, guys. I appreciate this. :D

greg1313 said:
$$\dfrac{e^{i\sqrt x}-1}{e^{i\sqrt x}+1}=\dfrac{e^{i\sqrt x/2}-e^{-i\sqrt x/2}}{e^{i\sqrt x/2}+e^{-i\sqrt x/2}}=i\dfrac{\sin\dfrac{\sqrt x}{2}}{\cos\dfrac{\sqrt x}{2}}=i\tan\dfrac{\sqrt x}{2}$$
I must remember this one for my exam. Sweet and short!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
7
Views
2K
Replies
13
Views
2K
Replies
3
Views
2K
Replies
5
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Back
Top