MHB What is the ratio of complex numbers in the form of a question?

Click For Summary
The ratio $\frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ simplifies to $i\tan\left(\frac{\sqrt{x}}{2}\right)$. The discussion highlights the use of Euler's formulas for sine and cosine to derive this result. Participants express concern about understanding the derivation for exam purposes. The final consensus emphasizes the importance of remembering this formula. This mathematical relationship is crucial for solving related complex number problems.
Guest2
Messages
192
Reaction score
0
What's the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ equal to? I can't work it out to anything I recognize. :confused:

The answer is $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$. I suppose I could work backwards from the answer, but I won't have the answer in the exam.
 
Mathematics news on Phys.org
See how far you can get using $$\sin(x)=\dfrac{e^{ix}-e^{-ix}}{2i}$$ and $$\cos(x)=\dfrac{e^{ix}+e^{-ix}}{2}$$.
 
Guest said:
What's the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ equal to? I can't work it out to anything I recognize. :confused:

The answer is $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$. I suppose I could work backwards from the answer, but I won't have the answer in the exam.

$\displaystyle \begin{align*} \frac{\mathrm{e}^{\mathrm{i}\,\sqrt{x}}-1}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} &= \frac{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1 - 2}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} \\ &= 1 - \frac{2}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} \\ &= 1 - \frac{2}{1 + \cos{ \left( \sqrt{x} \right) } + \mathrm{i} \sin{\left( \sqrt{x} \right) }} \\ &= 1 - \frac{2\,\left[ 1 + \cos{ \left( \sqrt{x} \right) } - \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] }{\left[ 1 + \cos{\left( \sqrt{x} \right) } + \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] \left[ 1 + \cos{ \left( \sqrt{x} \right) } - \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right)
} - 2\,\mathrm{i} \sin{ \left( \sqrt{x} \right) } }{ \left[ 1 + \cos{ \left( \sqrt{x} \right) } \right] ^2 + \sin^2{ \left( \sqrt{x} \right) } } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right) } - 2\,\mathrm{i}\sin{\left( \sqrt{x} \right) }}{1 + 2\cos{ \left( \sqrt{x} \right) } + \cos^2{ \left( \sqrt{x} \right) } + \sin^2{ \left( \sqrt{x} \right) } } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right) } - 2\,\mathrm{i}\sin{\left( \sqrt{x} \right) }}{2 + 2\cos{\left( \sqrt{x} \right) }} \\ &= 1 - \left[ 1 - \frac{2\,\mathrm{i}\sin{\left( \sqrt{x} \right) } }{2\,\left[ 1 + \cos{\left( \sqrt{x} \right) } \right] } \right] \\ &= \mathrm{i}\,\left[ \frac{\sin{\left( \sqrt{x} \right) }}{1 + \cos{ \left( \sqrt{x} \right) } } \right] \\ &= \mathrm{i}\,\left[ \frac{2\sin{\left( \frac{\sqrt{x}}{2} \right) } \cos{\left( \frac{\sqrt{x}}{2} \right) }}{1 + 2\cos^2{\left( \frac{\sqrt{x}}{2} \right) } - 1 } \right] \\ &= \mathrm{i}\,\left[ \frac{2\sin{\left( \frac{\sqrt{x}}{2} \right) }\cos{\left( \frac{\sqrt{x}}{2}\right) }}{2\cos^2{\left( \frac{\sqrt{x}}{2} \right) }} \right] \\ &= \mathrm{i}\tan{ \left( \frac{\sqrt{x}}{2} \right) } \end{align*}$
 
$$\dfrac{e^{i\sqrt x}-1}{e^{i\sqrt x}+1}=\dfrac{e^{i\sqrt x/2}-e^{-i\sqrt x/2}}{e^{i\sqrt x/2}+e^{-i\sqrt x/2}}=i\dfrac{\sin\dfrac{\sqrt x}{2}}{\cos\dfrac{\sqrt x}{2}}=i\tan\dfrac{\sqrt x}{2}$$
 
Thanks, guys. I appreciate this. :D

greg1313 said:
$$\dfrac{e^{i\sqrt x}-1}{e^{i\sqrt x}+1}=\dfrac{e^{i\sqrt x/2}-e^{-i\sqrt x/2}}{e^{i\sqrt x/2}+e^{-i\sqrt x/2}}=i\dfrac{\sin\dfrac{\sqrt x}{2}}{\cos\dfrac{\sqrt x}{2}}=i\tan\dfrac{\sqrt x}{2}$$
I must remember this one for my exam. Sweet and short!
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K