MHB What is the ratio of complex numbers in the form of a question?

AI Thread Summary
The ratio $\frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ simplifies to $i\tan\left(\frac{\sqrt{x}}{2}\right)$. The discussion highlights the use of Euler's formulas for sine and cosine to derive this result. Participants express concern about understanding the derivation for exam purposes. The final consensus emphasizes the importance of remembering this formula. This mathematical relationship is crucial for solving related complex number problems.
Guest2
Messages
192
Reaction score
0
What's the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ equal to? I can't work it out to anything I recognize. :confused:

The answer is $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$. I suppose I could work backwards from the answer, but I won't have the answer in the exam.
 
Mathematics news on Phys.org
See how far you can get using $$\sin(x)=\dfrac{e^{ix}-e^{-ix}}{2i}$$ and $$\cos(x)=\dfrac{e^{ix}+e^{-ix}}{2}$$.
 
Guest said:
What's the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ equal to? I can't work it out to anything I recognize. :confused:

The answer is $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$. I suppose I could work backwards from the answer, but I won't have the answer in the exam.

$\displaystyle \begin{align*} \frac{\mathrm{e}^{\mathrm{i}\,\sqrt{x}}-1}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} &= \frac{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1 - 2}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} \\ &= 1 - \frac{2}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} \\ &= 1 - \frac{2}{1 + \cos{ \left( \sqrt{x} \right) } + \mathrm{i} \sin{\left( \sqrt{x} \right) }} \\ &= 1 - \frac{2\,\left[ 1 + \cos{ \left( \sqrt{x} \right) } - \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] }{\left[ 1 + \cos{\left( \sqrt{x} \right) } + \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] \left[ 1 + \cos{ \left( \sqrt{x} \right) } - \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right)
} - 2\,\mathrm{i} \sin{ \left( \sqrt{x} \right) } }{ \left[ 1 + \cos{ \left( \sqrt{x} \right) } \right] ^2 + \sin^2{ \left( \sqrt{x} \right) } } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right) } - 2\,\mathrm{i}\sin{\left( \sqrt{x} \right) }}{1 + 2\cos{ \left( \sqrt{x} \right) } + \cos^2{ \left( \sqrt{x} \right) } + \sin^2{ \left( \sqrt{x} \right) } } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right) } - 2\,\mathrm{i}\sin{\left( \sqrt{x} \right) }}{2 + 2\cos{\left( \sqrt{x} \right) }} \\ &= 1 - \left[ 1 - \frac{2\,\mathrm{i}\sin{\left( \sqrt{x} \right) } }{2\,\left[ 1 + \cos{\left( \sqrt{x} \right) } \right] } \right] \\ &= \mathrm{i}\,\left[ \frac{\sin{\left( \sqrt{x} \right) }}{1 + \cos{ \left( \sqrt{x} \right) } } \right] \\ &= \mathrm{i}\,\left[ \frac{2\sin{\left( \frac{\sqrt{x}}{2} \right) } \cos{\left( \frac{\sqrt{x}}{2} \right) }}{1 + 2\cos^2{\left( \frac{\sqrt{x}}{2} \right) } - 1 } \right] \\ &= \mathrm{i}\,\left[ \frac{2\sin{\left( \frac{\sqrt{x}}{2} \right) }\cos{\left( \frac{\sqrt{x}}{2}\right) }}{2\cos^2{\left( \frac{\sqrt{x}}{2} \right) }} \right] \\ &= \mathrm{i}\tan{ \left( \frac{\sqrt{x}}{2} \right) } \end{align*}$
 
$$\dfrac{e^{i\sqrt x}-1}{e^{i\sqrt x}+1}=\dfrac{e^{i\sqrt x/2}-e^{-i\sqrt x/2}}{e^{i\sqrt x/2}+e^{-i\sqrt x/2}}=i\dfrac{\sin\dfrac{\sqrt x}{2}}{\cos\dfrac{\sqrt x}{2}}=i\tan\dfrac{\sqrt x}{2}$$
 
Thanks, guys. I appreciate this. :D

greg1313 said:
$$\dfrac{e^{i\sqrt x}-1}{e^{i\sqrt x}+1}=\dfrac{e^{i\sqrt x/2}-e^{-i\sqrt x/2}}{e^{i\sqrt x/2}+e^{-i\sqrt x/2}}=i\dfrac{\sin\dfrac{\sqrt x}{2}}{\cos\dfrac{\sqrt x}{2}}=i\tan\dfrac{\sqrt x}{2}$$
I must remember this one for my exam. Sweet and short!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
7
Views
3K
Replies
13
Views
2K
Replies
3
Views
2K
Replies
5
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Back
Top