What is the ratio of complex numbers in the form of a question?

Click For Summary

Discussion Overview

The discussion revolves around the mathematical expression for the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$. Participants explore different approaches to simplify or derive this expression, particularly in the context of preparing for an exam. The focus is primarily on mathematical reasoning and manipulation of complex numbers.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related

Main Points Raised

  • One participant expresses difficulty in recognizing the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ and mentions the answer is $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$.
  • Another participant suggests using the identities for sine and cosine in terms of exponential functions to explore the ratio further.
  • A later post reiterates the original question and provides a detailed step-by-step derivation that leads to the conclusion of $\displaystyle i\tan(\frac{\sqrt{x}}{2})$.
  • Another participant confirms the derived expression using a similar approach, reinforcing the connection to the tangent function.
  • One participant expresses gratitude for the assistance and notes the importance of remembering the derived expression for their exam.

Areas of Agreement / Disagreement

There is no explicit disagreement among participants, as they build upon each other's contributions. However, the discussion reflects multiple approaches to deriving the same result, indicating a shared understanding of the mathematical manipulation involved.

Contextual Notes

The discussion includes various mathematical steps and transformations that may depend on specific assumptions about the variables involved, particularly concerning the domain of $x$ and the properties of complex numbers.

Guest2
Messages
192
Reaction score
0
What's the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ equal to? I can't work it out to anything I recognize. :confused:

The answer is $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$. I suppose I could work backwards from the answer, but I won't have the answer in the exam.
 
Physics news on Phys.org
See how far you can get using $$\sin(x)=\dfrac{e^{ix}-e^{-ix}}{2i}$$ and $$\cos(x)=\dfrac{e^{ix}+e^{-ix}}{2}$$.
 
Guest said:
What's the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ equal to? I can't work it out to anything I recognize. :confused:

The answer is $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$. I suppose I could work backwards from the answer, but I won't have the answer in the exam.

$\displaystyle \begin{align*} \frac{\mathrm{e}^{\mathrm{i}\,\sqrt{x}}-1}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} &= \frac{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1 - 2}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} \\ &= 1 - \frac{2}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} \\ &= 1 - \frac{2}{1 + \cos{ \left( \sqrt{x} \right) } + \mathrm{i} \sin{\left( \sqrt{x} \right) }} \\ &= 1 - \frac{2\,\left[ 1 + \cos{ \left( \sqrt{x} \right) } - \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] }{\left[ 1 + \cos{\left( \sqrt{x} \right) } + \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] \left[ 1 + \cos{ \left( \sqrt{x} \right) } - \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right)
} - 2\,\mathrm{i} \sin{ \left( \sqrt{x} \right) } }{ \left[ 1 + \cos{ \left( \sqrt{x} \right) } \right] ^2 + \sin^2{ \left( \sqrt{x} \right) } } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right) } - 2\,\mathrm{i}\sin{\left( \sqrt{x} \right) }}{1 + 2\cos{ \left( \sqrt{x} \right) } + \cos^2{ \left( \sqrt{x} \right) } + \sin^2{ \left( \sqrt{x} \right) } } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right) } - 2\,\mathrm{i}\sin{\left( \sqrt{x} \right) }}{2 + 2\cos{\left( \sqrt{x} \right) }} \\ &= 1 - \left[ 1 - \frac{2\,\mathrm{i}\sin{\left( \sqrt{x} \right) } }{2\,\left[ 1 + \cos{\left( \sqrt{x} \right) } \right] } \right] \\ &= \mathrm{i}\,\left[ \frac{\sin{\left( \sqrt{x} \right) }}{1 + \cos{ \left( \sqrt{x} \right) } } \right] \\ &= \mathrm{i}\,\left[ \frac{2\sin{\left( \frac{\sqrt{x}}{2} \right) } \cos{\left( \frac{\sqrt{x}}{2} \right) }}{1 + 2\cos^2{\left( \frac{\sqrt{x}}{2} \right) } - 1 } \right] \\ &= \mathrm{i}\,\left[ \frac{2\sin{\left( \frac{\sqrt{x}}{2} \right) }\cos{\left( \frac{\sqrt{x}}{2}\right) }}{2\cos^2{\left( \frac{\sqrt{x}}{2} \right) }} \right] \\ &= \mathrm{i}\tan{ \left( \frac{\sqrt{x}}{2} \right) } \end{align*}$
 
$$\dfrac{e^{i\sqrt x}-1}{e^{i\sqrt x}+1}=\dfrac{e^{i\sqrt x/2}-e^{-i\sqrt x/2}}{e^{i\sqrt x/2}+e^{-i\sqrt x/2}}=i\dfrac{\sin\dfrac{\sqrt x}{2}}{\cos\dfrac{\sqrt x}{2}}=i\tan\dfrac{\sqrt x}{2}$$
 
Thanks, guys. I appreciate this. :D

greg1313 said:
$$\dfrac{e^{i\sqrt x}-1}{e^{i\sqrt x}+1}=\dfrac{e^{i\sqrt x/2}-e^{-i\sqrt x/2}}{e^{i\sqrt x/2}+e^{-i\sqrt x/2}}=i\dfrac{\sin\dfrac{\sqrt x}{2}}{\cos\dfrac{\sqrt x}{2}}=i\tan\dfrac{\sqrt x}{2}$$
I must remember this one for my exam. Sweet and short!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
3K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 4 ·
Replies
4
Views
3K