MHB What is the ratio of PA to PB on a semicircle with points A and B on the x-axis?

  • Thread starter Thread starter mathdad
  • Start date Start date
AI Thread Summary
The discussion centers on finding the ratio of distances PA to PB on a semicircle defined by the equation y = sqrt{1 - x^2}, with points A and B located on the x-axis at coordinates (a, 0) and (1/a, 0), respectively. The arbitrary point P is located on the semicircle in quadrant 2, with coordinates (x, sqrt{1 - x^2}). The distances from P to A and P to B are calculated using the distance formula, resulting in d(PA) = sqrt{a^2 - 2ax + 1} and d(PB) = (sqrt{a^2 - 2ax + 1})/a. The ratio PA/PB simplifies to a, confirming that PA is proportional to the value of a. The conclusion demonstrates the relationship between the distances and the parameter a.
mathdad
Messages
1,280
Reaction score
0
Semicircle y = sqrt{1 - x^2} is given as a graph on the xy-plane. Points A and B lie on the line y = 0. The x-coordinates of the points A and B are a and 1/a, respectively. Point P is an arbitrary point on the graph of y in quadrant 2 connecting to points A and B. Show that PA/PB = a.

Note: Assume that 0 < a < 1

Obviously, I need to find the distance from P to A and the distance from P to B.

Point A = (a, 0)

Point B = (1/a, 0)

I do not know the coordinates of point P.

I am stuck here.
 
Mathematics news on Phys.org
the coordinates of point P are $(x, \sqrt{1-x^2})$ ...
 
Thank you for providing the coordinates of point P.

Let d(PA) = distance from P to A.

After plugging into the distance formula for points on the xy-plane, and simplifying the radicand, I found d(PA) to be sqrt{a^2 - 2ax + 1 }.

Let d(PB) = distance from P to B.

Applying the same steps as before, I found d(PB) to be
(sqrt{a^2 -2ax + 1})/a.

PA/PB = a

[sqrt{a^2 - 2ax + 1}]/[sqrt{a^2 - 2ax + 1 }]/a = a

sqrt{a^2 - 2ax + 1 } • a/sqrt{a^2 - 2ax + 1 } = a

a = a

Done!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top