MHB What is the ratio of PA to PB on a semicircle with points A and B on the x-axis?

  • Thread starter Thread starter mathdad
  • Start date Start date
mathdad
Messages
1,280
Reaction score
0
Semicircle y = sqrt{1 - x^2} is given as a graph on the xy-plane. Points A and B lie on the line y = 0. The x-coordinates of the points A and B are a and 1/a, respectively. Point P is an arbitrary point on the graph of y in quadrant 2 connecting to points A and B. Show that PA/PB = a.

Note: Assume that 0 < a < 1

Obviously, I need to find the distance from P to A and the distance from P to B.

Point A = (a, 0)

Point B = (1/a, 0)

I do not know the coordinates of point P.

I am stuck here.
 
Mathematics news on Phys.org
the coordinates of point P are $(x, \sqrt{1-x^2})$ ...
 
Thank you for providing the coordinates of point P.

Let d(PA) = distance from P to A.

After plugging into the distance formula for points on the xy-plane, and simplifying the radicand, I found d(PA) to be sqrt{a^2 - 2ax + 1 }.

Let d(PB) = distance from P to B.

Applying the same steps as before, I found d(PB) to be
(sqrt{a^2 -2ax + 1})/a.

PA/PB = a

[sqrt{a^2 - 2ax + 1}]/[sqrt{a^2 - 2ax + 1 }]/a = a

sqrt{a^2 - 2ax + 1 } • a/sqrt{a^2 - 2ax + 1 } = a

a = a

Done!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top