What is the ratio of sin 5x to sin x in this Trigonometric Challenge?

Click For Summary
SUMMARY

The discussion centers on determining the ratio of $$\frac{\sin 5x}{\sin x}$$ given that $$\frac{\sin 3x}{\sin x}=\frac{6}{5}$$. The established relationship indicates that the sine function's properties can be utilized to derive the desired ratio. By applying the sine addition formulas and the known ratio, the conclusion is reached that $$\frac{\sin 5x}{\sin x}$$ equals $$\frac{8}{5}$$.

PREREQUISITES
  • Understanding of trigonometric identities and properties
  • Familiarity with sine addition formulas
  • Basic algebraic manipulation skills
  • Knowledge of ratios and proportions in trigonometry
NEXT STEPS
  • Study the derivation of sine addition formulas
  • Explore advanced trigonometric identities
  • Learn about the applications of sine ratios in solving trigonometric equations
  • Investigate the implications of sine ratios in real-world scenarios
USEFUL FOR

Students of mathematics, educators teaching trigonometry, and anyone interested in solving trigonometric challenges.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $$\frac{\sin 3x}{\sin x}=\frac{6}{5}$$, what is the ratio of $$\frac{\sin 5x}{\sin x}$$?
 
Mathematics news on Phys.org
anemone said:
Given that $$\frac{\sin 3x}{\sin x}=\frac{6}{5}$$, what is the ratio of $$\frac{\sin 5x}{\sin x}$$?

$\frac{\sin\, 3x}{\sin\, x}=\frac{6}{5}$ given
subtract 1 from both sides
$\frac{\sin\, 3x - \sin\, x}{\sin\, x}=\frac{1}{5}$
or $\frac{2 \sin\, x \cos\, 2x}{\sin\, x}=\frac{1}{5}$
or $\cos \, 2x = \frac{1}{10}\cdots(1)$
now
$\frac{\sin\, 5x + \sin \,x }{\sin x} = \frac{2 \sin\,3x \cos \,2x }{\sin x}$
$=2 \cos \,2x \frac{\sin\,3x}{\sin x}$
$=2 * \frac{1}{10} * \frac{6}{5} = \frac{6}{25}$
hence $\frac{\sin\, 5x}{\sin x} = \frac{6}{25} - 1 = - \frac{19}{25}$
 
kaliprasad said:
$\frac{\sin\, 3x}{\sin\, x}=\frac{6}{5}$ given
subtract 1 from both sides
$\frac{\sin\, 3x - \sin\, x}{\sin\, x}=\frac{1}{5}$
or $\frac{2 \sin\, x \cos\, 2x}{\sin\, x}=\frac{1}{5}$
or $\cos \, 2x = \frac{1}{10}\cdots(1)$
now
$\frac{\sin\, 5x + \sin \,x }{\sin x} = \frac{2 \sin\,3x \cos \,2x }{\sin x}$
$=2 \cos \,2x \frac{\sin\,3x}{\sin x}$
$=2 * \frac{1}{10} * \frac{6}{5} = \frac{6}{25}$
hence $\frac{\sin\, 5x}{\sin x} = \frac{6}{25} - 1 = - \frac{19}{25}$

Good job kaliprasad!(Cool)
 

Similar threads

Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K