MHB What is the ratio of sin 5x to sin x in this Trigonometric Challenge?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $$\frac{\sin 3x}{\sin x}=\frac{6}{5}$$, what is the ratio of $$\frac{\sin 5x}{\sin x}$$?
 
Mathematics news on Phys.org
anemone said:
Given that $$\frac{\sin 3x}{\sin x}=\frac{6}{5}$$, what is the ratio of $$\frac{\sin 5x}{\sin x}$$?

$\frac{\sin\, 3x}{\sin\, x}=\frac{6}{5}$ given
subtract 1 from both sides
$\frac{\sin\, 3x - \sin\, x}{\sin\, x}=\frac{1}{5}$
or $\frac{2 \sin\, x \cos\, 2x}{\sin\, x}=\frac{1}{5}$
or $\cos \, 2x = \frac{1}{10}\cdots(1)$
now
$\frac{\sin\, 5x + \sin \,x }{\sin x} = \frac{2 \sin\,3x \cos \,2x }{\sin x}$
$=2 \cos \,2x \frac{\sin\,3x}{\sin x}$
$=2 * \frac{1}{10} * \frac{6}{5} = \frac{6}{25}$
hence $\frac{\sin\, 5x}{\sin x} = \frac{6}{25} - 1 = - \frac{19}{25}$
 
kaliprasad said:
$\frac{\sin\, 3x}{\sin\, x}=\frac{6}{5}$ given
subtract 1 from both sides
$\frac{\sin\, 3x - \sin\, x}{\sin\, x}=\frac{1}{5}$
or $\frac{2 \sin\, x \cos\, 2x}{\sin\, x}=\frac{1}{5}$
or $\cos \, 2x = \frac{1}{10}\cdots(1)$
now
$\frac{\sin\, 5x + \sin \,x }{\sin x} = \frac{2 \sin\,3x \cos \,2x }{\sin x}$
$=2 \cos \,2x \frac{\sin\,3x}{\sin x}$
$=2 * \frac{1}{10} * \frac{6}{5} = \frac{6}{25}$
hence $\frac{\sin\, 5x}{\sin x} = \frac{6}{25} - 1 = - \frac{19}{25}$

Good job kaliprasad!(Cool)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top