What is the reason behind fermions being unable to share the same quantum state?

Click For Summary
SUMMARY

The Pauli exclusion principle dictates that identical fermions cannot occupy the same quantum state, as their valid states must be anti-symmetric with respect to particle exchange. This principle is rooted in the spin-statistics theorem, which explains that for identical particles, the total angular momentum (L) and spin (S) must satisfy specific conditions, such as L+S being even in the center of mass frame. For electrons, this means they must have opposite spins if all other quantum numbers are identical. References for further understanding include the Jacob & Wick paper and Rose's "Elementary Theory of Angular Momentum."

PREREQUISITES
  • Understanding of the Pauli exclusion principle
  • Familiarity with the spin-statistics theorem
  • Knowledge of angular momentum in quantum mechanics
  • Basic concepts of wavefunction symmetry and anti-symmetry
NEXT STEPS
  • Study the spin-statistics theorem in detail
  • Explore the implications of the Pauli exclusion principle on atomic structure
  • Learn about SU(2) couplings and their relation to particle statistics
  • Read Jacob & Wick's paper on helicity states for a deeper understanding of identical particle scattering
USEFUL FOR

Physicists, quantum mechanics students, and researchers interested in particle physics and the fundamental principles governing fermions and bosons.

Higgsono
Messages
93
Reaction score
4
What is the explanation for the case that fermion's can't occupy the same quantum state? Is there some logic behind this or is it just observation?
 
Physics news on Phys.org
The short answer is that the Pauli principle states that a valid state for identical fermions must be anti-symmetric with respect to the exchange of two particles. You can't construct an anti-symmetric state where two fermions are in the same single-particle state.

As to why the Pauli principle applies, you have to look up the spin-statistics theorem. Ultimately, the answer is "because Nature is that way."
 
Ultimately, the reason is that nature doesn't care which particle a potential observer thinks is which. A similar rule applies to bosons. The rules are usually expressed as symmetry or anti-symmetry of the wavefunction depending on spin. An alternative expression of the rule (and one that relates directly to observables) is that L+S must be even in the CM frame (equal and opposite momentum) for any pair of identical particles, where L is the net orbital angular momentum and S is the net spin angular momentum. In a frame where the particles have equal and parallel momentum, then the rule becomes that S must be even and, in the case of electrons, this means S=0 so they must have opposite spin. In the case of atomic electrons, where it becomes the Pauli rule, it is stated as "no two electrons can occupy the same state" because if all other quantum numbers are identical then the spins must be opposite so they sum to 0 (with the corollary that if the spins are the same, then the states must differ in some other way).
 
Last edited:
mikeyork said:
UAn alternative expression of the rule (and one that relates directly to observables) is that L+S must be even in the CM frame (equal and opposite momentum) for any pair of identical particles, where L is the net orbital angular momentum and S is the net spin angular momentum.
Do you have any reference for this statement? Does it mean that having two electrons, one with ##l=0,m_l=0,m_s=1/2## and the other ##l=2,m_l=2,m_s=1/2## (so ##L=2##, ##S=1##) is not allowed?
 
DrClaude said:
Do you have any reference for this statement? Does it mean that having two electrons, one with ##l=0,m_l=0,m_s=1/2## and the other ##l=2,m_l=2,m_s=1/2## (so ##L=2##, ##S=1##) is not allowed?
Good question! The L+S rule comes from SU(2) couplings given the usual anti-symmetry. Off the top of my head I think the answer to your question is that you can't get those two specific orbital states in the CM frame because of the spatial symmetry relating the angular co-ordinates (their momenta point in opposite directions). So, for instance you could have l1 = l2 = 1 and then the L=1 state would require s1 = s2. From memory I think the original rule comes from the classic Jacob & Wick* paper on helicity states, but you can also find it in my spin-statistics papers (which I haven't linked because they are not accepted mainstream for other reasons). PM me if you want further information.

*M. Jacob and G. Wick, “On the general theory of collisions for particles with spin,” Annals Phys. 7 (1959) 404–428. (I can't locate my copy at this moment but, IIRC, they give the partial wave analysis of identical particle scattering in the CM frame.)

Later edit: Also check out Rose "Elementary Theory of Angular Momentum", Chapter XII, section 38 ("Identical Particles in L-S coupling").
 
Last edited:

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K