What is the relationship between arc length and curves in calculus?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Arc Curves
Click For Summary

Discussion Overview

The discussion revolves around the relationship between arc length and curves in calculus, focusing on the mathematical derivation of arc length formulas and the interpretation of symbols used in these contexts. Participants explore the application of the Pythagorean theorem to curves, the definitions of arc length, and the distinction between scalar and vector representations.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants explain the derivation of the arc length formula using the Pythagorean theorem, noting that $(\delta s)^2=(\delta x)^2+(\delta y)^2$ leads to the expression for $s'(x)$.
  • There is a discussion about why only the positive root is taken for $s'(x)$, with one participant stating that arc length is always positive.
  • Some participants express uncertainty about whether $s(x)$ represents the curve or the arc length, with one clarifying that $s(x)$ is the arc length from a starting point to a point with coordinate $x$.
  • Another participant introduces the notation $\sigma$ for a more general representation of arc length in higher dimensions, suggesting that it does not rely on the monotonicity of the x-coordinate.
  • There is a question about the interpretation of $\delta s$ and its role in representing small distances along the curve, with a participant suggesting that it allows for the application of the Pythagorean theorem.

Areas of Agreement / Disagreement

Participants generally agree on the mathematical derivation of the arc length formula and the positive nature of arc length. However, there is some disagreement and uncertainty regarding the interpretation of symbols and whether $s$ represents the curve or the arc length.

Contextual Notes

Participants note the potential for confusion in notation, particularly regarding the use of $s$ for both arc length and curve representation. The discussion also highlights the importance of monotonicity in the context of arc length calculations.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

In some notes that I am reading there is the following:

View attachment 4793

$$(\delta s)^2=(\delta x)^2+(\delta y)^2 \Rightarrow \left (\frac{\delta s}{\delta x}\right )^2=1+\left (\frac{\delta y}{\delta x}\right )^2$$ When $\delta x \rightarrow 0 $ we get $$(s'(x))^2=1+(y'(x))^2 \Rightarrow s'(x)=\sqrt{1+(f'(x))^2} \Rightarrow s(x)=\int_A^x \sqrt{1+(f'(s))^2}ds$$



I have understood it as follows:

We have the curve $s$ and $\delta s$ is an approximation of the curve, so we get the triangle $\delta x$, $\delta y$, $\delta s$ and we apply the Pythagorean Theorem to get $(\delta s)^2=(\delta x)^2+(\delta y)^2$. This is equal to $\left (\frac{\delta s}{\delta x}\right )^2=1+\left (\frac{\delta y}{\delta x}\right )^2$.

From the limit $$s'(x)=\lim_{h \rightarrow 0}\frac{s(x+h)-s(x)}{h}=\lim_{h \rightarrow 0}\frac{\delta s}{h}$$ (resp. $y'(x)$) for $h=\delta x$ we get $(s'(x))^2=1+(y'(x))^2$.

Then taking the square root of the last equality we get $s'(x)=\pm \sqrt{1+(y'(x))^2}$.

Why do we take only the positive one, $s'(x)=\sqrt{1+(y'(x))^2}$ ?

After that we take integral to get $s(x)$.

Is everything correct?

Is $s(x)$ the curve or the arc length ?


After that there is the following:

$\sigma : [0, 1] \rightarrow \mathbb{R}^2 \text{ or } \mathbb{R}^3$
$$I(\sigma )=\int_0^1 ||\sigma '(t)||dt$$
$$d\sigma (t)=\sigma '(t)dt \\ |ds|=||\sigma '(t)||dt \\\ \sigma (t)=(\sigma_1 (t), \sigma_2 (t), \sigma_3 (t)), t \in [0, 1] \\ ||\sigma '(t)||=\sqrt{(\sigma_1' (t))^2, (\sigma_2' (t))^2,( \sigma_3' (t))^2}$$

So when we have a function in $\mathbb{R}$ we use the formula $s(x)$ and when we have a function in $\mathbb{R}^2$ or $\mathbb{R}^3$ we use the last formula $I(\sigma )$ to calculate the arc length?
 

Attachments

  • arc.png
    arc.png
    2 KB · Views: 121
Physics news on Phys.org
mathmari said:
Why do we take only the positive one, $s'(x)=\sqrt{1+(y'(x))^2}$ ?

After that we take integral to get $s(x)$.

Is everything correct?

Is $s(x)$ the curve or the arc length ?

Hi mathmari! (Mmm)

The symbol $s$ represents the arc length.
A length is always positive, therefore we only look at the positive root.
$s(x)$ is the arc length of the curve from some starting point $A$ up to a point with coordinate $x$.
This only works if $x$ is monotonous while traversing the curve.

We have to be careful though.
There is a chance the $s$ is also used to represent the curve, which would be bad practice.
Properly it should be $\mathbf s$ that represents the curve, using a bold face to indicate that it's a vector instead of a scalar. (Nerd)
After that there is the following:

$\sigma : [0, 1] \rightarrow \mathbb{R}^2 \text{ or } \mathbb{R}^3$
$$I(\sigma )=\int_0^1 ||\sigma '(t)||dt$$
$$d\sigma (t)=\sigma '(t)dt \\ |ds|=||\sigma '(t)||dt \\\ \sigma (t)=(\sigma_1 (t), \sigma_2 (t), \sigma_3 (t)), t \in [0, 1] \\ ||\sigma '(t)||=\sqrt{(\sigma_1' (t))^2, (\sigma_2' (t))^2,( \sigma_3' (t))^2}$$

So when we have a function in $\mathbb{R}$ we use the formula $s(x)$ and when we have a function in $\mathbb{R}^2$ or $\mathbb{R}^3$ we use the last formula $I(\sigma )$ to calculate the arc length?

This is a more general representation that doesn't rely on whether the x coordinate is monotonous or not.
The symbol $\sigma$ has been chosen to represent the same thing as $s$, the arc length, just with a different parameter.
They are related as follows:
$$\sigma(t) = s(x(t))$$
where
$$x(t) = \sigma_1(t)$$
(Wink)
 
mathmari said:
$$(\delta s)^2=(\delta x)^2+(\delta y)^2 \Rightarrow \left (\frac{\delta s}{\delta x}\right )^2=1+\left (\frac{\delta y}{\delta x}\right )^2$$ When $\delta x \rightarrow 0 $ we get $$(s'(x))^2=1+(y'(x))^2 \Rightarrow s'(x)=\sqrt{1+(f'(x))^2} \Rightarrow s(x)=\int_A^x \sqrt{1+(f'(s))^2}ds$$
I like Serena said:
The symbol $s$ represents the arc length.
A length is always positive, therefore we only look at the positive root.
$s(x)$ is the arc length of the curve from some starting point $A$ up to a point with coordinate $x$.
This only works if $x$ is monotonous while traversing the curve.

We have to be careful though.
There is a chance the $s$ is also used to represent the curve, which would be bad practice.
Properly it should be $\mathbf s$ that represents the curve, using a bold face to indicate that it's a vector instead of a scalar. (Nerd)
At the point where we apply the Pythagorean theorem, does $s$ represent the curve or the arc length? And wht $\delta s$ ?
I like Serena said:
This is a more general representation that doesn't rely on whether the x coordinate is monotonous or not.
The symbol $\sigma$ has been chosen to represent the same thing as $s$, the arc length, just with a different parameter.
They are related as follows:
$$\sigma(t) = s(x(t))$$
where
$$x(t) = \sigma_1(t)$$
(Wink)

I see... (Sun)
 
mathmari said:
At the point where we apply the Pythagorean theorem, does $s$ represent the curve or the arc length? And wht $\delta s$ ?

Let's just say that $\delta s$ represents a small distance along the curve, small enough to be considered straight so we can apply the Pythagorean theorem.
Adding up all $\delta s$ values will give us the curve length (in the limit). (Mmm)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K