Bushy
- 40
- 0
For $$P=P_0\times e^{G(t)}$$
and $$G'(t) = a+bt$$
Show $$G(0)=0$$
I get $$G(t) = \int a+bt ~dt = at+\frac{1}{2} b t^2+C$$ therefore $$G(0)=C $$
and $$G'(t) = a+bt$$
Show $$G(0)=0$$
I get $$G(t) = \int a+bt ~dt = at+\frac{1}{2} b t^2+C$$ therefore $$G(0)=C $$