MHB What is the relationship between z and ω when |z| = |ω| = 1?

Click For Summary
The discussion explores the relationship between two complex numbers z and ω, both with a magnitude of 1, under the condition that the magnitudes of z + iω and z - iω equal 2. It is established that the equations derived from these conditions lead to a contradiction, specifically that x₁y₂ - x₂y₁ equals both 0 and 1 simultaneously. This indicates that no complex numbers z and ω can satisfy the given conditions. Additionally, it is noted that for |z| = 1, the only scenario where |z + iω| equals 2 would require z to equal iω, which would result in |z - iω| being 0. Thus, the conclusion is that no valid solutions exist for the specified conditions.
juantheron
Messages
243
Reaction score
1
If z and \omega are two complex no. such that \mid z \mid =\mid \omega \mid = 1 and \mid z+i\omega \mid = \mid z-i\omega \mid = 2.Then find value of z
 
Mathematics news on Phys.org
jacks said:
If z and \omega are two complex no. such that \mid z \mid =\mid \omega \mid = 1 and \mid z+i\omega \mid = \mid z-i\omega \mid = 2.Then find value of z

Hi jacks,

Take, \(z=x_1+iy_1\mbox{ and }w=x_2+iy_2\)

Since, \(\displaystyle \mid z+i\omega \mid = \mid z-i\omega \mid\),

\[\mid(x_1+iy_1)+i(x_2+iy_2)\mid=\mid(x_1+iy_1)-i(x_2+iy_2)\mid\]

\[\Rightarrow\mid(x_1-y_2)+i(x_2+y_1)\mid=\mid(x_1+y_2)+i(y_1-x_2)\mid\]

\[\Rightarrow (x_1-y_2)^2+(x_2+y_1)^2=(x_1+y_2)^2+(y_1-x_2)^2\]

\[\Rightarrow x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}-2x_{1}y_2+2x_{2}y_1=x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+2x_{1}y_2-2x_{2}y_1\]

\[\Rightarrow -2x_{1}y_2+2x_{2}y_1=2x_{1}y_2-2x_{2}y_1\]

\[\Rightarrow x_{1}y_2-x_{2}y_1=0\]

Since, \(\mid z-i\omega \mid = 2\),

\begin{equation}x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+2x_{1}y_2-2x_{2}y_1=4\end{equation}

Also, \(\mid z \mid =\mid \omega \mid = 1\Rightarrow x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}=2\)

\[\therefore x_{1}y_2-x_{2}y_1=1\]

This is a contradiction since we have obtained \(x_{1}y_2-x_{2}y_1=0\). There are no complex numbers \(z\) and \(w\) satisfying the given conditions.
 
Another way to see this.

argand.png


Since |z| = 1, the only way for |z + iw| to be 2 is for z to coincide with iw, but then |z - iw| = 0.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 1 ·
Replies
1
Views
712
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K