MHB What is the relationship between z and ω when |z| = |ω| = 1?

AI Thread Summary
The discussion explores the relationship between two complex numbers z and ω, both with a magnitude of 1, under the condition that the magnitudes of z + iω and z - iω equal 2. It is established that the equations derived from these conditions lead to a contradiction, specifically that x₁y₂ - x₂y₁ equals both 0 and 1 simultaneously. This indicates that no complex numbers z and ω can satisfy the given conditions. Additionally, it is noted that for |z| = 1, the only scenario where |z + iω| equals 2 would require z to equal iω, which would result in |z - iω| being 0. Thus, the conclusion is that no valid solutions exist for the specified conditions.
juantheron
Messages
243
Reaction score
1
If z and \omega are two complex no. such that \mid z \mid =\mid \omega \mid = 1 and \mid z+i\omega \mid = \mid z-i\omega \mid = 2.Then find value of z
 
Mathematics news on Phys.org
jacks said:
If z and \omega are two complex no. such that \mid z \mid =\mid \omega \mid = 1 and \mid z+i\omega \mid = \mid z-i\omega \mid = 2.Then find value of z

Hi jacks,

Take, \(z=x_1+iy_1\mbox{ and }w=x_2+iy_2\)

Since, \(\displaystyle \mid z+i\omega \mid = \mid z-i\omega \mid\),

\[\mid(x_1+iy_1)+i(x_2+iy_2)\mid=\mid(x_1+iy_1)-i(x_2+iy_2)\mid\]

\[\Rightarrow\mid(x_1-y_2)+i(x_2+y_1)\mid=\mid(x_1+y_2)+i(y_1-x_2)\mid\]

\[\Rightarrow (x_1-y_2)^2+(x_2+y_1)^2=(x_1+y_2)^2+(y_1-x_2)^2\]

\[\Rightarrow x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}-2x_{1}y_2+2x_{2}y_1=x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+2x_{1}y_2-2x_{2}y_1\]

\[\Rightarrow -2x_{1}y_2+2x_{2}y_1=2x_{1}y_2-2x_{2}y_1\]

\[\Rightarrow x_{1}y_2-x_{2}y_1=0\]

Since, \(\mid z-i\omega \mid = 2\),

\begin{equation}x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+2x_{1}y_2-2x_{2}y_1=4\end{equation}

Also, \(\mid z \mid =\mid \omega \mid = 1\Rightarrow x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}=2\)

\[\therefore x_{1}y_2-x_{2}y_1=1\]

This is a contradiction since we have obtained \(x_{1}y_2-x_{2}y_1=0\). There are no complex numbers \(z\) and \(w\) satisfying the given conditions.
 
Another way to see this.

argand.png


Since |z| = 1, the only way for |z + iw| to be 2 is for z to coincide with iw, but then |z - iw| = 0.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top