MHB What is the remainder when m+n is divided by 1000 in a trigonometric challenge?

AI Thread Summary
The discussion revolves around solving the equation involving trigonometric functions, specifically $\dfrac{\sin^4 x}{20}+\dfrac{\cos^4 x}{21}=\dfrac{1}{41}$, to find the value of $\dfrac{\sin^6 x}{20^3}+\dfrac{\cos^6 x}{21^3}$. Participants express appreciation for a solution provided by a user named Opalg, highlighting its clarity and effectiveness. The goal is to express the result as a fraction $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime, and to determine the remainder of $m+n$ when divided by 1000. The discussion emphasizes the challenge of the problem and the satisfaction with the solution approach. The final answer is sought in the context of modular arithmetic.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x$ be a real number such that $\dfrac{\sin^4 x}{20}+\dfrac{\cos^4 x}{21}=\dfrac{1}{41}$. If the value of $\dfrac{\sin^6 x}{20^3}+\dfrac{\cos^6 x}{21^3}$ can be expressed as $\dfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers, find the remainder when $m+n$ is divided by 1000.
 
Mathematics news on Phys.org
If $\dfrac{\sin^4x}{20} + \dfrac{\cos^4x}{21} = \dfrac1{41}$ then $$21*41\sin^4x + 20*41(1 - \sin^2x)^2 = 20*21,$$ $$41^2\sin^4x - 2*20*41\sin^2x + 20^2 = 0,$$ $$(41\sin^2x - 20)^2 = 0.$$ Therefore $\sin^2x = \dfrac{20}{41}$, $\cos^2x = \dfrac{21}{41}$ and $$\dfrac{\sin^6x}{20^3} + \dfrac{\cos^6x}{21^3} = \dfrac1{41^3} + \dfrac1{41^3} = \dfrac2{68921}.$$ So $m = 2$, $n = 68921$, $m+n = 68923$ and the remainder when $m+n$ is divided by $1000$ is $923$.
 
Aww, very well done, Opalg! I have been trying to solve it for a number of times and for some reason, I didn't see the way to tackle it as you did! As always, thanks for your insightful solution!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
1K
Replies
1
Views
8K
Replies
3
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
Back
Top