What is the role of gravity in the cosmological redshift?

Click For Summary
The discussion centers on the cosmological redshift and the role of gravity in this phenomenon. It explains that the redshift occurs due to the accumulation of infinitesimal Doppler shifts as photons travel through varying local Hubble velocities, rather than being a global Doppler effect. Gravity indirectly influences the redshift by reducing the Hubble rate over time, but does not introduce a separate blueshift factor, as this would lead to incorrect calculations. The conversation also touches on the mathematical representation of the accumulated Doppler shifts and the implications of different coordinate systems on the understanding of redshift. Ultimately, gravity does not contribute additional effects beyond what is already accounted for in the Doppler shift calculations.
  • #31
Jorrie said:
I don't like getting dragged into these sort of arguments - that's why there are Advisors on this forum. I'll rather spend time on a numerical simulation, since you and me tended to get going forward with that in the past, which is better than going into endless arguments...
Reluctantly I agree. You are bouncing from critisism to critisism without coming to grips with the fundamental points made by the sources I reference. You seem mostly interested in pushing Peacock's Diatribe eq 16 which is in a different coordinate system, and therefore is not directly relevant to whether my equation and the accompanying explanation in my OP are correct. I suggest you start your own thread about eq 16 so it can have the full discussion it deserves without diverting from this thread.
Jorrie said:
Nevertheless, http://www.astro.ucla.edu/~wright/cosmo_02.htm#DH" are not in FLRW coordinates - his second spacetime diagram (hyperbolic simultaneity) is in conformal (Minkowski) coordinates, based on proper distance and cosmological time.
Jorrie, I feel like you are looking for opportunities to create confusing about what I said. My reference to Ned was for the very narrow purpose of pointing out one example of FRW proper distance coordinates. Of course I was referring to Wright's top diagram. That's the one that uses FRW proper distance coordinates. Of course his bottom diagram is Minkowski. I already said that multiple times in this thread. Do I have to repeat every detail in every post so that you won't jump on my words?

Ned is showing how the two coordinate systems are different but related. He's showing that constant cosmological time in FRW coordinates transforms into time dilation in Minkowski coordinates. All of which 100% supports my effort to convince you that cosmologists agree, without controversy, that constant cosmological time is a unique feature of FRW coordinates and it is not an inherent feature of time-dilated Minkowski coordinates. Which is the exact opposite of what you claimed a couple of posts ago. If after all this discussion you do not accept that simple, simple, simple point, then we are stalled.
Jorrie said:
If you haven't done so yet, I recommend that you read the Geraint F. Lewis (et. al) paper http://arxiv.org/pdf/0707.2106v1", especially section 2.2 on velocities.
Been there, done that, adds nothing to the particular topic of this conversation. That paper focuses on conformally flat coordinates, which is yet another of many ways of looking at the expansion. In section 2.2 you referenced, the authors are starting from FRW comoving coordinates, not FRW proper distance coordinates, but in any event they say:

"A fundamental definition of distance in general relativity is the proper distance, defined as the spatial separation between two points along a hypersurface of constant time. Given the form of the FLRW metric (Equation 1), the radial distance from the origin to a coordinate x along a hypersurface of constant t is;

Dp(t) = a(t) x

Taking the derivative with respect to coordinate time [which is synchronous for all comoving observers (fixed x) and is equivalent to their proper time] we obtain what we will refer to as the proper velocity..."
Jorrie said:
Without going into it, in his textbook Prof. Peacock did nothing of the sorts that you are doing.
How can you make such a careless assertion? Here's what Peacock's textbook, which was written in 1999 and revised several times through at least 2005, says at p.87:

"One way of looking at this issue is to take the rigid point of view tha 1 + z tells us nothing more than how much the universe has expanded since the emission of the photons we now receive. Perhaps more illuminating, however, is to realize that, although the redshift cannot be thought of as a global Doppler shift, it is correct to think of the effect as an accumulation of the infinitesimal Doppler shifts caused by photons passing between fundamental observers separated by a small distance:

\frac{dz}{1+z} = \frac{H_{z}dl_{z}}{c} (3.67)

(where dl is a radial increment of proper distance). This expression may be verified by substitution of the standard expressions for Hz and dl/dz."

It is easy to see that Peacock's formula is mathematically equivalent to mine. And that there is no SR time dilation parameter in his equation. And when he refers to a "rigid point of view", clearly he's referring to the same rigid view you hold.
Jorrie said:
The reason is simple: your treatment is technically wrong from a Doppler shift point of view. I'm not going to argue that further, sorry.
Your unsupported assertion that my treatment is wrong has no persuasive value (but I still respect you!) Sorry to see you go, but this part of the discussion was just going around in circles anyway.
 
Last edited by a moderator:
Space news on Phys.org
  • #32
nutgeb, you lost me too. I don't know where to start with you re-edited post. There are at least two factual errors, and some major misconceptions, but obviously I don't know how to communicate these points. We've been through it several times, while you would admit now that there is time dilation in Minkowski coordinates, in the same post you say its application is wrong. I just don't know what you're trying to say.
 
  • #33
Ich, what don't you understand about this part, which is referring to summing up locally observed light travel distances in Minkowski coordinates?

"This should be obvious: no comoving Milne observer sees the distances to galaxies near his own location to be contracted; only distances to galaxies far away from his location are contracted. When each such Milne observer contributes to the group calculation his own measurement of only the local part of the worldline as he observers it, each such local measurement is non-contracted, and therefore the global sum of all such local measurements cannot be length contracted."
 
Last edited:
  • #34
Trying to avoid the "circles", here is my attempt towards some progress.
nutgeb said:
It is easy to see that Peacock's formula is mathematically equivalent to mine. And that there is no SR time dilation parameter in his equation.
The equivalence stops once you have replaced H_{z}dl_{z} with the approximation dv_{z}. Thereafter you treat it as a classical Newtonian Doppler shift that can be accumulated. Peacock doesn't. He uses his result to show connections to de Broglie wavelength redshifts and expansion in the empty (Milne) model in general. AFAIK, he only returned to redshift proper in his 2001 and 2007 papers (maybe also in others), where he treats them in the standard relativistic sense.

Since the dl} steps are small, your method uses the approximation:

1 + dv = 1 + tanh(H dl) \approx 1 + H dl = 1 + H dt = 1 + da/a

Chalnoth has shown in reply #3 that an accumulation of (1+da/a) factors yields the correct cosmic redshift ratio (1+z). It then follows that an accumulation of (1+dv) factors will yield an approximately correct result. I think it boils down to a mix of SR and comoving coordinates. Before the approx sign it is Minkowskian and to the right it is cosmological length and time. You get away with it for small steps, where the difference is negligible and the end result looks good.

Maybe it is good enough for all practical purposes - the engineering part of me likes that. The scientific part of me does not. :)

Edit: I think the part nobody here likes is the claim that Peacock, B&H, etc. must be in error when using the full relativistic treatment when they apply the Minkowskian velocity and that the Newtonian equation should be used. To use the left side of the approximate equality above in the integration is not wrong, because the right hand side gives the proper answer from an expansion point of view (and so should the left hand side). IMO, one should just not call it a Doppler shift calculation - it simply mimics the expansion factor accumulation (1+da/a) closely.
 
Last edited:
  • #35
Jorrie said:
The equivalence stops once you have replaced H_{z}dl_{z} with the approximation dv_{z}.
Jorrie, I appreciate your focused response here. But I don't follow you when you say I have replaced an exact result with an approximation in my equation. My H_{t} is in the same units as Peacock's H_{z}, and my d_{t} is just a convenient substitution for d_{l} which is in the same units as Peacock's dl_{z}. There is no approximation taking place, the parameters are one and the same.
Jorrie said:
Since the dl} steps are small, your method uses the approximation:

1 + dv = 1 + tanh(H dl) \approx 1 + H dl = 1 + H dt = 1 + da/a
Ah, I see how you are misinterpreting my equation. You are suggesting that because the dl} steps are small, I must have converted from FRW coordinates to Minkowski coordinates. But I made no such conversion, explicitly or implicitly. There is nothing that prevents one from using FRW coordinates for individual infinitesimally small local frames. The FRW local frames will exactly match local observations. FRW frames scale perfectly from infinity all the way down to zero. Which is what I have done in my equation. (The fact that writers often want to use local Minkowski frames in order to get back to a coordinate system where they can use SR doesn't mean that one is compelled to make the conversion.) And I think what I did is exactly consistent with what Peacock intended in his 3.67.
Jorrie said:
Thereafter you treat it as a classical Newtonian Doppler shift that can be accumulated. Peacock doesn't. He uses his result to show connections to de Broglie wavelength redshifts and expansion in the empty (Milne) model in general.
There goes that disparaging term "Newtonian" again. What I said that my equation, and therefore Peacock's 3.67 as well, can be interpreted as either the classical Doppler shift formula, or as the SR Doppler shift formula with the time dilation factored out. The characterization is up to the preference of the interpreter. I think you are familiar with the fact that the classical Doppler equation for a moving emitter and stationary observer (1 + v/c) is exactly equal to the SR Doppler equation divided by the SR time dilation factor.

I think its interesting that in his description of 3.67, Peacock used the neutral term "Doppler shift", when it must have been obvious to him that there was no element of time dilation in his equation. My guess is that in the context of a textbook, he did not want to launch into the lengthy explanation that would be required to avoid the predictable knee-jerk reaction that there was something 'non-relativistic' or 'Newtonian' (hold your nose!) if FRW inherently invokes a Doppler shift that includes no element of time dilation.
Jorrie said:
AFAIK, he only returned to redshift proper in his 2001 and 2007 papers (maybe also in others), where he treats them in the standard relativistic sense.
I'll just reiterate that, by Peacock's own introduction to the Diatribe on his website, it was never intended to be treated like a peer-reviewed paper, it is more in the nature of musings, which he published in a permanent form because they had been referenced by multiple authors in published papers. The use of the word "Diatribe" in the title is a big clue as to how he thought about it. And I think he would be dismayed to have it interpreted as a bolt-in replacement for a section of his textbook. Besides, we already discussed that his Diatribe eq 16 must be in Schwarzschild coordinates while his textbook eq 3.67 is in FRW coordinates, so he could not have meant for one equation to supersede the other; rather the two equations complement each other.
Jorrie said:
Edit: I think the part nobody here likes is the claim that Peacock, B&H, etc. must be in error when using the full relativistic treatment when they apply the Minkowskian velocity and that the Newtonian equation should be used. To use the left side of the approximate equality above in the integration is not wrong, because the right hand side gives the proper answer from an expansion point of view (and so should the left hand side).
I suppose you intend "full relativistic treatment" to again mean that it's better than a mere "Newtonian" treatment. Sigh. You still need to learn that there is no moral superiority in injecting SR treatments inappropriately into calculations involving FRW coordinates, but obviously you resist being cured of that blind spot.

However, in the interest of being as balanced as possible in the discussion of whether B&H's use of SR is "right" or "wrong", and to hopefully wrap up the discussion of this point with you and Ich, I will soften my conclusion as follows:

= = =

Bunn & Hogg's excellent paper uses parallel transport and a 'world tube' analysis to demonstrate informally that the cosmological redshift can be properly interpreted as an accumlation of local Doppler shifts. B&H caution that their approach includes an element of error in cases where there is any spacetime curvature (i.e., cosmic gravity). The size of this error becomes vanishingly small as the local segment size approaches zero.

However, B&H fail to articulate that their use of the SR velocity addition formula introduces a second element of error even if the spacetime curvature is zero. When the light travel distances measured locally for each segment are summed, they do not exactly equal the FRW 'global' light travel distance, instead they only asymptotically approach it. This is because the SR formula includes an element of time dilation, yet any non-zero amount of time dilation will cause the sum of the local light travel times to diverge from the FRW 'global' light travel distance. This discrepency arises from the well-known fact that the clocks of fundamental comovers in FRW coordinates all run at the same rate, so a photon passing between them experiences no net time dilation. B&H's approach starts with Minkowski segments and tries to aggregate them into an FRW 'global' worldline. In doing so, it tries to compare parameters from two different coordinate systems without applying the necessary coordinate conversion equation. Fortunately, the size of this second error also becomes vanishingly small as the local segment size approaches zero.

It is not really fair to critisize a short paper because it wasn't expanded to include additional analysis. But B&H did miss an opportunity in their paper to perform a simpler segment analysis arranged the other way around. Instead of summing local Minkowski segments, one starts with the FRW 'global' worldline length and then divides it into an arbitary number of FRW 'local' worldline segments. There is no need to convert these local FRW segments into Minkowski coordinates. The FRW segments nevertheless represent exactly the locally observed segment light travel distance, even for infinitesimal segment lengths. The lengths of these FRW local segments will of course sum exactly to the FRW 'global' worldline length, including at segment sizes > 0, and whether or not spacetime curvature is present. So both kinds of error inherent in the B&H approximation are eliminated. In this pure FRW alternative analysis, the FRW local segments must of course be summed directly without employing the SR velocity addition formula, because the latter would introduce the same mismatch between the collective lengths of the parts and the whole that exists in B&H's approach.
 
Last edited:
  • #36
nutgeb said:
Jorrie, I appreciate your focused response here.
Thanks. Now, to focus the discussion even more, I have PM'd you a spreadsheet (link) with my solution to the Peacock, B&H, 1/a and your models, aggregated over some 8000 steps, z=0 to 1000. When you have the time, please investigate and let me know if you agree. Especially, my spreadsheet fails to show the "second element of error" that you refer to here:
nutgeb said:
However, B&H fail to articulate that their use of the SR velocity addition formula introduces a second element of error even if the spacetime curvature is zero. When the light travel distances measured locally for each segment are summed, they do not exactly equal the FRW 'global' light travel distance, instead they only asymptotically approach it. This is because the SR formula includes an element of time dilation, yet any non-zero amount of time dilation will cause the sum of the local light travel times to diverge from the FRW 'global' light travel distance.
Despite your many explanations, I still fail to understand what "FRW 'global' light travel distance" means. AFAIK, there is only one definition for light travel distance: D_{lt} = c(t_{observe}-t_{emit}), where t_emit is expressed in the reference frame of the observer. This is essentially the SR distance. Do you have a reference for FRW global light travel distance?
 
  • #37
Ich, what don't you understand about this part, which is referring to summing up locally observed light travel distances in Minkowski coordinates?

"This should be obvious: no comoving Milne observer sees the distances to galaxies near his own location to be contracted; only distances to galaxies far away from his location are contracted. When each such Milne observer contributes to the group calculation his own measurement of only the local part of the worldline as he observers it, each such local measurement is non-contracted, and therefore the global sum of all such local measurements cannot be length contracted."
I understand this part. Do you understand that each observer will actually improve her contribution if he includes time dilation in its (maximum pc :wink: ) frame?
I don't know how often I repeated that point: it's actually relativistic doppler shift, but can be approximated as a "classical" shift for small distances.
 
  • #38
Jorrie said:
Despite your many explanations, I still fail to understand what "FRW 'global' light travel distance" means. AFAIK, there is only one definition for light travel distance: D_{lt} = c(t_{observe}-t_{emit}), where t_emit is expressed in the reference frame of the observer. This is essentially the SR distance. Do you have a reference for FRW global light travel distance?
Jorrie, the SR 'global' light travel distance is Lorentz-contracted, which is obviously different from the definition you give. It is illustrated for the empty Milne model in Ned Wright's lower diagram, as the vertical distance along the t axis.

The formula you cite is in fact the formula for FRW 'global' light travel distance. It is illustrated for the empty Milne model in Ned Wright's upper diagram, again as the vertical distance along the t axis. It is not Lorentz-contracted; therefore it is longer than its SR counterpart. There is no problem expressing t in the observer's local frame, because as I've said many times, in FRW coordinates t = t', the observer's t is exactly the same as the emitter's t', there is no time dilation as between fundamental comovers.

If you sum up locally observed (SR or FRW) light travel segments, you will automatically calculate (asymptotically) the FRW 'global' light travel distance, not the SR "global light travel distance. As I said in an earlier post, due to the nature of the Lorentz contraction, locally observed segments have asymptotically approaching zero Lorentz contraction. That's why you can't sum up local non-Lorentz-contracted segments to calculate a Lorentz-contracted total.
 
Last edited:
  • #39
nutgeb said:
If you sum up locally observed (SR or FRW) light travel segments, you will automatically calculate (asymptotically) the FRW 'global' light travel distance, not the SR "global light travel distance. As I said in an earlier post, due to the nature of the Lorentz contraction, locally observed segments have asymptotically approaching zero Lorentz contraction. That's why you can't sum up local non-Lorentz-contracted segments to calculate a Lorentz-contracted total.
Sorry, but I'm still totally lost as to what you mean by "FRW 'global' light travel distance" (and I've read everything that you wrote in this thread). Ned Wright's tutorial does not help either, probably because we interpret the diagrams differently. I will discuss this with you in a PM first, to try and understand what you say. Then we can come back here if we wish.
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 29 ·
Replies
29
Views
6K
  • · Replies 16 ·
Replies
16
Views
17K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 28 ·
Replies
28
Views
6K