MHB What is the simplified form of (p ∧ q) ↓ q using basic propositional logic?

moredumbimpossi
Messages
2
Reaction score
0
Please help me with this thing. I'm so frustrated I can't understand propositional logic

Demonstrate this:

(p ∧ q) ↓ q ≡ ¬q

PLEASE.
 
Physics news on Phys.org
moredumbimpossi said:
Please help me with this thing. I'm so frustrated I can't understand propositional logic

Demonstrate this:

(p ∧ q) ↓ q ≡ ¬q

PLEASE.

Hi moredumbimpossi, welcome to MHB!

What have you tried? Where are you stuck?

Simplest method to prove something like this, is to set up a truth table.
Let's start with p=0 and q=0.
What is (p ∧ q) ↓ q = (0 ∧ 0) ↓ 0 then?
 
I like Serena said:
Hi moredumbimpossi, welcome to MHB!

What have you tried? Where are you stuck?

Simplest method to prove something like this, is to set up a truth table.
Let's start with p=0 and q=0.
What is (p ∧ q) ↓ q = (0 ∧ 0) ↓ 0 then?

Hi., thanks for replying
This has to be reduced with the laws of logic
 
moredumbimpossi said:
Hi., thanks for replying
This has to be reduced with the laws of logic

Oh, okay.
Let's first get to basic operations then.
In general, we have $(a ↓ b) = \lnot (a \lor b)$ don't we? It's a NOR after all.
What do we get if we replace the NOR (↓) in (p ∧ q) ↓ q by those basic operations?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top