MHB What is the Simplified Form of This Trigonometric Identity?

  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
The discussion centers on simplifying the trigonometric identity $\sin(A) + \sin(A + \frac{2\pi}{3}) + \sin(A + \frac{4\pi}{3}) = 0$. Participants focus on breaking down the left-hand side using angle addition formulas and identifying the contributions of the sine and cosine terms. Key calculations involve evaluating $1 + \cos(\frac{2\pi}{3}) + \cos(\frac{4\pi}{3})$ and $\sin(\frac{2\pi}{3}) + \sin(\frac{4\pi}{3})$. The goal is to verify the identity through these simplifications. Ultimately, the identity holds true, confirming the original equation.
Silver Bolt
Messages
8
Reaction score
0
$\sin\left({A}\right)+\sin\left({A+\frac{2\pi}{3}}\right)+\sin\left({A+\frac{4\pi}{3}}\right)=0$

$L.H.S=\sin\left({A}\right)+\left(\sin\left({A}\right)\cos\left({\frac{2\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{2\pi}{3}}\right)\right)+\left(\sin\left({A}\right)\cos\left({\frac{4\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{4\pi}{3}}\right)\right) $

From there?
 
Last edited:
Mathematics news on Phys.org
You've only given an expression...what is the actual identity to be verified?
 
Corrected now
 
Silver Bolt said:
$\sin\left({A}\right)+\sin\left({A+\frac{2\pi}{3}}\right)+\sin\left({A+\frac{4\pi}{3}}\right)=0$

$L.H.S=\sin\left({A}\right)+\left(\sin\left({A}\right)\cos\left({\frac{2\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{2\pi}{3}}\right)\right)+\left(\sin\left({A}\right)\cos\left({\frac{4\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{4\pi}{3}}\right)\right) $

From there?

I would write the LHS as:

$$\sin(A)\left(1+\cos\left(\frac{2\pi}{3}\right)+\cos\left(\frac{4\pi}{3}\right)\right)+\cos(A)\left(\sin\left(\frac{2\pi}{3}\right)+\sin\left(\frac{4\pi}{3}\right)\right)$$

Now, what are:

$$1+\cos\left(\frac{2\pi}{3}\right)+\cos\left(\frac{4\pi}{3}\right)=?$$

$$\sin\left(\frac{2\pi}{3}\right)+\sin\left(\frac{4\pi}{3}\right)=?$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K