What is the Simplified Form of This Trigonometric Identity?

  • Context: MHB 
  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
SUMMARY

The trigonometric identity discussed is $\sin(A) + \sin(A + \frac{2\pi}{3}) + \sin(A + \frac{4\pi}{3}) = 0$. The left-hand side (LHS) can be simplified using the cosine and sine addition formulas, leading to the expression $\sin(A)(1 + \cos(\frac{2\pi}{3}) + \cos(\frac{4\pi}{3})) + \cos(A)(\sin(\frac{2\pi}{3}) + \sin(\frac{4\pi}{3}))$. The key components to evaluate are $1 + \cos(\frac{2\pi}{3}) + \cos(\frac{4\pi}{3})$ and $\sin(\frac{2\pi}{3}) + \sin(\frac{4\pi}{3})$ to confirm the identity holds true.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with sine and cosine addition formulas
  • Knowledge of radians and their properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Evaluate $1 + \cos(\frac{2\pi}{3}) + \cos(\frac{4\pi}{3})$
  • Calculate $\sin(\frac{2\pi}{3}) + \sin(\frac{4\pi}{3})$
  • Explore other trigonometric identities involving sine and cosine
  • Study the unit circle and its implications for trigonometric functions
USEFUL FOR

Students of mathematics, educators teaching trigonometry, and anyone looking to deepen their understanding of trigonometric identities and their proofs.

Silver Bolt
Messages
8
Reaction score
0
$\sin\left({A}\right)+\sin\left({A+\frac{2\pi}{3}}\right)+\sin\left({A+\frac{4\pi}{3}}\right)=0$

$L.H.S=\sin\left({A}\right)+\left(\sin\left({A}\right)\cos\left({\frac{2\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{2\pi}{3}}\right)\right)+\left(\sin\left({A}\right)\cos\left({\frac{4\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{4\pi}{3}}\right)\right) $

From there?
 
Last edited:
Mathematics news on Phys.org
You've only given an expression...what is the actual identity to be verified?
 
Corrected now
 
Silver Bolt said:
$\sin\left({A}\right)+\sin\left({A+\frac{2\pi}{3}}\right)+\sin\left({A+\frac{4\pi}{3}}\right)=0$

$L.H.S=\sin\left({A}\right)+\left(\sin\left({A}\right)\cos\left({\frac{2\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{2\pi}{3}}\right)\right)+\left(\sin\left({A}\right)\cos\left({\frac{4\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{4\pi}{3}}\right)\right) $

From there?

I would write the LHS as:

$$\sin(A)\left(1+\cos\left(\frac{2\pi}{3}\right)+\cos\left(\frac{4\pi}{3}\right)\right)+\cos(A)\left(\sin\left(\frac{2\pi}{3}\right)+\sin\left(\frac{4\pi}{3}\right)\right)$$

Now, what are:

$$1+\cos\left(\frac{2\pi}{3}\right)+\cos\left(\frac{4\pi}{3}\right)=?$$

$$\sin\left(\frac{2\pi}{3}\right)+\sin\left(\frac{4\pi}{3}\right)=?$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K