MHB What is the Simplified Form of This Trigonometric Identity?

  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
The discussion centers on simplifying the trigonometric identity $\sin(A) + \sin(A + \frac{2\pi}{3}) + \sin(A + \frac{4\pi}{3}) = 0$. Participants focus on breaking down the left-hand side using angle addition formulas and identifying the contributions of the sine and cosine terms. Key calculations involve evaluating $1 + \cos(\frac{2\pi}{3}) + \cos(\frac{4\pi}{3})$ and $\sin(\frac{2\pi}{3}) + \sin(\frac{4\pi}{3})$. The goal is to verify the identity through these simplifications. Ultimately, the identity holds true, confirming the original equation.
Silver Bolt
Messages
8
Reaction score
0
$\sin\left({A}\right)+\sin\left({A+\frac{2\pi}{3}}\right)+\sin\left({A+\frac{4\pi}{3}}\right)=0$

$L.H.S=\sin\left({A}\right)+\left(\sin\left({A}\right)\cos\left({\frac{2\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{2\pi}{3}}\right)\right)+\left(\sin\left({A}\right)\cos\left({\frac{4\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{4\pi}{3}}\right)\right) $

From there?
 
Last edited:
Mathematics news on Phys.org
You've only given an expression...what is the actual identity to be verified?
 
Corrected now
 
Silver Bolt said:
$\sin\left({A}\right)+\sin\left({A+\frac{2\pi}{3}}\right)+\sin\left({A+\frac{4\pi}{3}}\right)=0$

$L.H.S=\sin\left({A}\right)+\left(\sin\left({A}\right)\cos\left({\frac{2\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{2\pi}{3}}\right)\right)+\left(\sin\left({A}\right)\cos\left({\frac{4\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{4\pi}{3}}\right)\right) $

From there?

I would write the LHS as:

$$\sin(A)\left(1+\cos\left(\frac{2\pi}{3}\right)+\cos\left(\frac{4\pi}{3}\right)\right)+\cos(A)\left(\sin\left(\frac{2\pi}{3}\right)+\sin\left(\frac{4\pi}{3}\right)\right)$$

Now, what are:

$$1+\cos\left(\frac{2\pi}{3}\right)+\cos\left(\frac{4\pi}{3}\right)=?$$

$$\sin\left(\frac{2\pi}{3}\right)+\sin\left(\frac{4\pi}{3}\right)=?$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
851
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
997
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K