Undergrad What is the size of the quotient group L/pZ^m?

Click For Summary
The size of the quotient group L/pZ^m is p^(m-n) due to the structure of L, defined as the set of solutions to Ax = 0 mod p, where A has full rank. Since Ax = 0 has p^(m-n) solutions, this corresponds directly to the number of distinct cosets formed when dividing L by the subgroup pZ^m, which contains multiples of p. Each coset has p^n elements, confirming that the overall size of the quotient group is indeed p^(m-n). This relationship clarifies the connection between the solutions of the equation and the size of the quotient group. Further inquiries are welcome for deeper understanding.
Albert01
Messages
14
Reaction score
0
Hello,

I have a question that I would like to ask here.

Let ##L = \left\{ x \in \mathbb{Z}^m : Ax = 0 \text{ mod } p \right\}##, where ##A \in \mathbb{Z}_p^{n \times m}##, ##rank(A) = n##, ## m \geq n## and ##Ax = 0## has ##p^{m-n}## solutions, why is then ##|L/p\mathbb{Z}^m| = p^{m-n}##?

I am extremely looking forward to your responses!
 
Last edited by a moderator:
Physics news on Phys.org


Hello,

The size of the quotient group L/pZ^m is p^(m-n). This is because pZ^m is the subgroup of L that contains all elements of L that are multiples of p. When we take the quotient of L by pZ^m, we are essentially dividing out all of these multiples of p. This leaves us with p^(m-n) distinct cosets, each of which has p^n elements. Therefore, the size of the quotient group is p^(m-n).

In the given scenario, L is the set of all solutions to the equation Ax = 0 mod p. Since there are p^(m-n) solutions to this equation, the size of the quotient group L/pZ^m is also p^(m-n).

I hope this helps to clarify any confusion. Please let me know if you have any further questions. Thank you.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
838
  • · Replies 5 ·
Replies
5
Views
909
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 61 ·
3
Replies
61
Views
10K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
3K