I What is the size of the quotient group L/pZ^m?

Albert01
Messages
14
Reaction score
0
Hello,

I have a question that I would like to ask here.

Let ##L = \left\{ x \in \mathbb{Z}^m : Ax = 0 \text{ mod } p \right\}##, where ##A \in \mathbb{Z}_p^{n \times m}##, ##rank(A) = n##, ## m \geq n## and ##Ax = 0## has ##p^{m-n}## solutions, why is then ##|L/p\mathbb{Z}^m| = p^{m-n}##?

I am extremely looking forward to your responses!
 
Last edited by a moderator:
Physics news on Phys.org


Hello,

The size of the quotient group L/pZ^m is p^(m-n). This is because pZ^m is the subgroup of L that contains all elements of L that are multiples of p. When we take the quotient of L by pZ^m, we are essentially dividing out all of these multiples of p. This leaves us with p^(m-n) distinct cosets, each of which has p^n elements. Therefore, the size of the quotient group is p^(m-n).

In the given scenario, L is the set of all solutions to the equation Ax = 0 mod p. Since there are p^(m-n) solutions to this equation, the size of the quotient group L/pZ^m is also p^(m-n).

I hope this helps to clarify any confusion. Please let me know if you have any further questions. Thank you.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
737
  • · Replies 26 ·
Replies
26
Views
687
  • · Replies 5 ·
Replies
5
Views
799
Replies
21
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
458
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K