John O' Meara
- 325
- 0
According to this equation \exp^{iy} = \cos y + \iota \sin y \mbox{ => } \exp^{\frac{\pi \iota}{2}} = \iota \ \mbox{,} \ \\ \exp^{\pi \iota} = -1 \ \ \exp^{\frac{-\pi \iota}{2}} = -\iota \ \ \exp^{2 \pi \iota} = 1 \\. What then is \sqrt{\iota} = \iota^{\frac{1}{2}} \mbox{ equal to ?} \\
Does not \exp^{\frac{\pi \iota}{4}}=\cos\frac{\pi}{4} + \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} +\frac{\iota}{\sqrt{2}} \ \mbox{ which is not =} \ \sqrt{\iota} \\
I find it hard to see that it equals \exp^{\frac{\pi \iota}{4}}\\. Help would be welcome. Thanks.
Does not \exp^{\frac{\pi \iota}{4}}=\cos\frac{\pi}{4} + \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} +\frac{\iota}{\sqrt{2}} \ \mbox{ which is not =} \ \sqrt{\iota} \\
I find it hard to see that it equals \exp^{\frac{\pi \iota}{4}}\\. Help would be welcome. Thanks.