[sp]Let $a = \lfloor x \rfloor$. The solutions of the quadratic equation $5+ax-2x^2=0$ are $\frac14\bigl(a \pm\sqrt{a^2+40}\bigr)$, and to get a positive solution we must take the positive square root. So we want to find all the non-negative integers $a$ for which $\left\lfloor \frac14\bigl(a + \sqrt{a^2+40}\bigr) \right\rfloor = a$.
When $a=0$, the solution to the quadratic is $x = \frac14\sqrt{40} \approx 1.58$ and $\lfloor x \rfloor = 1$, which is too big.
When $a=1$, the solution to the quadratic is $x = \frac14\bigl(1 + \sqrt{41}\bigr) \approx 1.85$ and $\lfloor x \rfloor = 1$. So $x = \frac14\bigl(1 +\sqrt{41}\bigr)$ qualifies as a solution.
When $a=2$, the solution to the quadratic is $x = \frac14\bigl(2 + \sqrt{44}\bigr) \approx 2.16$ and $\lfloor x \rfloor = 2$. So $x = \frac14\bigl(2 +\sqrt{44}\bigr)$ qualifies as a solution.
When $a\geqslant3$, $\sqrt{a^2+40} \leqslant a+4$ and so $\frac14\bigl(a + \sqrt{a^2+40}\bigr) \leqslant \frac12a+1$, which is less than $a$ and therefore too small.
So the only solutions occur when $a=1$ or $2$, and the sum of those solutions is $\frac34 + \frac14\bigl(\sqrt{41} + \sqrt{44}\bigr).$[/sp]