What is the sum of all positive solutions?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Positive Sum
Click For Summary

Discussion Overview

The discussion revolves around finding the sum of all positive solutions to the equation \(5+x\lfloor x \rfloor-2x^2=0\). Participants explore the implications of the floor function and the resulting quadratic equation, examining different cases based on the integer value of \(\lfloor x \rfloor\).

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • One participant proposes setting \(a = \lfloor x \rfloor\) and derives the solutions of the quadratic equation as \(x = \frac{1}{4}(a \pm \sqrt{a^2 + 40})\), emphasizing the need to consider only the positive square root.
  • When \(a=0\), the solution is approximately \(1.58\), but \(\lfloor x \rfloor\) is too large.
  • For \(a=1\), the solution is approximately \(1.85\), and \(\lfloor x \rfloor\) matches, qualifying it as a solution.
  • For \(a=2\), the solution is approximately \(2.16\), and \(\lfloor x \rfloor\) also matches, qualifying it as a solution.
  • Participants note that for \(a \geq 3\), the derived expression for \(x\) becomes less than \(a\), indicating no valid solutions exist in this range.
  • Another participant reiterates the findings and suggests that the remaining solutions can be found within the bounds \(\frac{\sqrt{21}-1}{2} < x \leq \sqrt{5}\), confirming that \(\lfloor x \rfloor\) can be either 1 or 2.

Areas of Agreement / Disagreement

Participants generally agree on the solutions for \(a=1\) and \(a=2\) as the only valid cases, but the discussion does not resolve whether there are additional solutions or if the identified bounds are comprehensive.

Contextual Notes

The discussion relies on the assumptions regarding the behavior of the floor function and the properties of the quadratic equation, which are not fully explored in terms of all possible values of \(x\). There are also unresolved details regarding the implications of the derived bounds.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the sum of the positive solutions to $5+x\lfloor x \rfloor-2x^2=0$.
 
Mathematics news on Phys.org
Using The formula $(x-1)<\lfloor x \rfloor \leq x$

So $x^2-x < x\lfloor x \rfloor \leq x^2\Rightarrow x^2-x+5 < x\lfloor x \rfloor +5 \leq x^2$

So $x^2-x+5 -2x^2 < x\lfloor x \rfloor +5-2x^2 \leq x^2+5-2x^2$

So $-x^2-x+5 < 5+x\lfloor x \rfloor -2x^2 \leq -x^2+5$

So $-x^2-x+5 < 0 \leq -x^2+5$

Now Solving $-x^2-x+5 < 0$, we get $\displaystyle x> \frac{\left(\sqrt{21}-1\right)}{2}\cup x< \frac{\left(\sqrt{-21}-1\right)}{2}$

Now Solving $-x^2+5\geq 0$ , we get $\sqrt{5}\leq x \leq \sqrt{5}$

Now Solution of $-x^2-x+5 < 0 \leq -x^2+5$ is $\displaystyle \frac{\sqrt{21}-1}{2}<x \leq \sqrt{5}$

So We get $\lfloor x \rfloor = 2$ means $2\leq x<3$

Now given $5+x\lfloor x \rfloor -2x^2 = 0$ put $\lfloor x \rfloor = 2\;,$ we get

$5+2x-2x^2 = 0$ ,we get $\displaystyle x = \frac{\sqrt{11}+1}{2}$

But I have missed $2$ more solution.

I did not understand where i have missed.

Thanks
 
[sp]Let $a = \lfloor x \rfloor$. The solutions of the quadratic equation $5+ax-2x^2=0$ are $\frac14\bigl(a \pm\sqrt{a^2+40}\bigr)$, and to get a positive solution we must take the positive square root. So we want to find all the non-negative integers $a$ for which $\left\lfloor \frac14\bigl(a + \sqrt{a^2+40}\bigr) \right\rfloor = a$.

When $a=0$, the solution to the quadratic is $x = \frac14\sqrt{40} \approx 1.58$ and $\lfloor x \rfloor = 1$, which is too big.

When $a=1$, the solution to the quadratic is $x = \frac14\bigl(1 + \sqrt{41}\bigr) \approx 1.85$ and $\lfloor x \rfloor = 1$. So $x = \frac14\bigl(1 +\sqrt{41}\bigr)$ qualifies as a solution.

When $a=2$, the solution to the quadratic is $x = \frac14\bigl(2 + \sqrt{44}\bigr) \approx 2.16$ and $\lfloor x \rfloor = 2$. So $x = \frac14\bigl(2 +\sqrt{44}\bigr)$ qualifies as a solution.

When $a\geqslant3$, $\sqrt{a^2+40} \leqslant a+4$ and so $\frac14\bigl(a + \sqrt{a^2+40}\bigr) \leqslant \frac12a+1$, which is less than $a$ and therefore too small.

So the only solutions occur when $a=1$ or $2$, and the sum of those solutions is $\frac34 + \frac14\bigl(\sqrt{41} + \sqrt{44}\bigr).$[/sp]
 
jacks said:
Using The formula $(x-1)<\lfloor x \rfloor \leq x$

So $x^2-x < x\lfloor x \rfloor \leq x^2\Rightarrow x^2-x+5 < x\lfloor x \rfloor +5 \leq x^2$

So $x^2-x+5 -2x^2 < x\lfloor x \rfloor +5-2x^2 \leq x^2+5-2x^2$

So $-x^2-x+5 < 5+x\lfloor x \rfloor -2x^2 \leq -x^2+5$

So $-x^2-x+5 < 0 \leq -x^2+5$

Now Solving $-x^2-x+5 < 0$, we get $\displaystyle x> \frac{\left(\sqrt{21}-1\right)}{2}\cup x< \frac{\left(\sqrt{-21}-1\right)}{2}$

Now Solving $-x^2+5\geq 0$ , we get $\sqrt{5}\leq x \leq \sqrt{5}$

Now Solution of $-x^2-x+5 < 0 \leq -x^2+5$ is $\displaystyle \frac{\sqrt{21}-1}{2}<x \leq \sqrt{5}$

So We get $\lfloor x \rfloor = 2$ means $2\leq x<3$

Now given $5+x\lfloor x \rfloor -2x^2 = 0$ put $\lfloor x \rfloor = 2\;,$ we get

$5+2x-2x^2 = 0$ ,we get $\displaystyle x = \frac{\sqrt{11}+1}{2}$

But I have missed $2$ more solution.

I did not understand where i have missed.

Thanks

Hi jacks, thanks for participating and I want to tell you that from the final set of solution that you have already figured it out, i.e. $\displaystyle \frac{\sqrt{21}-1}{2}<x \leq \sqrt{5}$, $\lfloor x \rfloor$ can be either 1 or 2. And from $\lfloor x \rfloor=1$, you will find the other remaining 2 solutions.:)

Opalg said:
[sp]Let $a = \lfloor x \rfloor$. The solutions of the quadratic equation $5+ax-2x^2=0$ are $\frac14\bigl(a \pm\sqrt{a^2+40}\bigr)$, and to get a positive solution we must take the positive square root. So we want to find all the non-negative integers $a$ for which $\left\lfloor \frac14\bigl(a + \sqrt{a^2+40}\bigr) \right\rfloor = a$.

When $a=0$, the solution to the quadratic is $x = \frac14\sqrt{40} \approx 1.58$ and $\lfloor x \rfloor = 1$, which is too big.

When $a=1$, the solution to the quadratic is $x = \frac14\bigl(1 + \sqrt{41}\bigr) \approx 1.85$ and $\lfloor x \rfloor = 1$. So $x = \frac14\bigl(1 +\sqrt{41}\bigr)$ qualifies as a solution.

When $a=2$, the solution to the quadratic is $x = \frac14\bigl(2 + \sqrt{44}\bigr) \approx 2.16$ and $\lfloor x \rfloor = 2$. So $x = \frac14\bigl(2 +\sqrt{44}\bigr)$ qualifies as a solution.

When $a\geqslant3$, $\sqrt{a^2+40} \leqslant a+4$ and so $\frac14\bigl(a + \sqrt{a^2+40}\bigr) \leqslant \frac12a+1$, which is less than $a$ and therefore too small.

So the only solutions occur when $a=1$ or $2$, and the sum of those solutions is $\frac34 + \frac14\bigl(\sqrt{41} + \sqrt{44}\bigr).$[/sp]

Well done Opalg and thanks for participating!:cool:
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K