I What is the Trace of a Fourth Rank Tensor in Index Notation?

  • Thread starter Thread starter binbagsss
  • Start date Start date
  • Tags Tags
    Trace
binbagsss
Messages
1,291
Reaction score
12
What is the general expression for the trace of a fourth rank tensor? Do you sum over possibilities of contractions with some factor?

So, for instance, for the Riemann tensor, it is given by:

$\eta_{ab}\eta_{cd}R^{acbd}$

due to these being independent contractions due to the symmetry properties the Riemann tensor obeys.

But what would it be for a general fourth rank tensor?

Thanks
 
Physics news on Phys.org
Is it even defined for tensors of rank higher than 2?
 
binbagsss said:
What is the general expression for the trace of a fourth rank tensor? Do you sum over possibilities of contractions with some factor?

So, for instance, for the Riemann tensor, it is given by:

$\eta_{ab}\eta_{cd}R^{acbd}$

due to these being independent contractions due to the symmetry properties the Riemann tensor obeys.

But what would it be for a general fourth rank tensor?

Thanks
Why do you want to know this? Or better: what is the trace to you?

The trace is not only a formula. We can define it for matrices by the characteristic polynomial, for field extensions, or what we get if we differentiate the determinant at ##1##. It is an invariant quantity (versus change of basis).

You can artificially define a trace. $$V\otimes V\otimes V\otimes V \cong \underbrace{(V\otimes V)}_{=:W}\otimes \underbrace{(V\otimes V)^*}_{=:W^*}
$$
is a matrix, i.e. an endomorphism of ##W.## As such, it has a trace.
See https://en.wikipedia.org/wiki/Tensor_contraction for the "official" generalization. You will find a better explanation on the German version https://de.wikipedia.org/wiki/Tensorverjüngung of it. If you use Chrome, then right-click on the page for a translation. It will give you at least the important sentence:
Applications can be found e.g. B. in the theory of relativity[3] (see also length contraction), mechanics[4] etc.[5]
with corresponding links that is not part of the English version (or not in that wording).
 
Last edited:
I am not too familiar with tensor product notation etc, is is possible to answer using tensor index notation?

why? looking at tensor decompositions of fourth rank tensors.
 
binbagsss said:
I am not too familiar with tensor product notation etc, is is possible to answer using tensor index notation?

why? looking at tensor decompositions of fourth rank tensors.
See the two Wikipedia pages for index notation and the links I quoted.
 
I'm a bit confused by the conditions on the existence of coordinate basis given by Frobenius's theorem. Namely, let's take a n-dimensional smooth manifold and a set of n smooth vector fields defined on it. Suppose they are pointwise linearly independent and do commute each other (i.e. zero commutator/Lie bracket). That means they span the entire tangent space at any point and since commute, they define a local coordinate basis. What does this mean? Well, starting from any point on the...

Similar threads

  • · Replies 3 ·
Replies
3
Views
9K
Replies
2
Views
4K
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
533
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
3K
Replies
4
Views
7K
  • · Replies 10 ·
Replies
10
Views
3K