MHB What Is the Upper Bound of Groups of Order in Finite Group Theory?

Click For Summary
In finite group theory, there is a theorem indicating that for any positive integer \(n\), there are finitely many types of groups of order \(n\). The proof involves defining a mapping \(f:G\times G \rightarrow X\) with \(X\) containing \(n\) elements, leading to the conclusion that the upper bound on the number of different groups of order \(n\) is \(n^{n^{2}}\). A participant initially miscalculated the number of mappings by not considering the exponential growth of choices for each element in \(G\times G\). The correct calculation shows that for a group of 2 elements, there are indeed \(2^{4} = 16\) mappings, not 8. This clarification highlights the importance of understanding the relationship between the sizes of the sets involved in the mapping.
pauloromero1983
Messages
2
Reaction score
0
In the context of group theory, there's a theorem that states that for a given positive integer \(n\) there exist finitely different types of groups of order \(n\). Notice that the theorem doesn´t say anything of how many groups there are, only states that such groups exist. In the proof of this statement, they define a map \(f:G\times G \rightarrow X\) where \(X\) is a set with \(n\) elements. Defining a group structure in the same map by means of the product rule \(f(g_{1})f(g_{2})=f(g_{1}g_{2})\), where \(g_{1}, g_{2}\) belong to \(G\) they arrive to the following conclusion: there's an upper bound on the number of different groups of order \(n\), namely: \(n^{n^{2}}\)

My question is how to arrive to such conclusion. I am aware that, for every ordered pair of \(G\times G\) there's \(n\) images (since \(X\) was assumed to have \(n\) elements). For a concrete example, let be \(G\) a group of 2 elements. Then, there are 4 ordered pairs. Each pair has 2 images, so the total number of maps would be 4*2=8. However, by use of the relation \(n^{n^{2}}\) we get \(2^{2^{2}}=16\), i.e, there are 16 different maps, not 8. I am missing something here, but I don't know what exactly what the error is.
 
Physics news on Phys.org
Hi pauloromero1983,

In the example you gave for each element of $G\times G$ there are 2 choices in $X$ to which the element can be mapped. Since the total number of elements in $G\times G$ is 4, the total number of possible mappings is $2\times 2\times 2\times 2 = 2^{4} = 16.$

In general, if $A$ and $B$ are finite sets, then there are $|B|^{|A|}$ different mappings/functions from $A$ to $B$. Does this help answer your question?
 
ok, I think I understand now, thank you.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 26 ·
Replies
26
Views
811
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
9K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K