MHB What is the value of $\dfrac{f(-5)+f(9)}{4}$ in the Polynomial Challenge III?

Click For Summary
SUMMARY

The value of $\dfrac{f(-5)+f(9)}{4}$ can be determined using the polynomial function $f(x)=x^4+px^3+qx^2+rx+s$, with known values $f(3)=2481$, $f(2)=1654$, and $f(1)=827$. By applying polynomial interpolation techniques, one can derive the coefficients $p$, $q$, $r$, and $s$ to evaluate $f(-5)$ and $f(9)$. The final result will yield the required value of the expression.

PREREQUISITES
  • Understanding polynomial functions and their properties
  • Familiarity with polynomial interpolation methods
  • Knowledge of evaluating polynomial expressions
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study polynomial interpolation techniques, such as Lagrange interpolation
  • Learn how to derive polynomial coefficients from given function values
  • Explore the use of synthetic division for polynomial evaluation
  • Investigate the behavior of polynomial functions at specific points
USEFUL FOR

Mathematicians, educators, students in algebra and calculus, and anyone interested in polynomial function analysis.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $f(x)=x^4+px^3+qx^2+rx+s$, where $p,\,q,\,r,\,s$ are real constants. Suppose $f(3)=2481$, $f(2)=1654$, $f(1)=827$.

Determine the value of $\dfrac{f(-5)+f(9)}{4}$.
 
Mathematics news on Phys.org
anemone said:
Let $f(x)=x^4+px^3+qx^2+rx+s$, where $p,\,q,\,r,\,s$ are real constants. Suppose $f(3)=2481$, $f(2)=1654$, $f(1)=827$.

Determine the value of $\dfrac{f(-5)+f(9)}{4}$.

Hello.

f(1)=827=827*1

f(2)=1654=827*2

f(3)=2481=827*3

Therefore:

\dfrac{f(-5)+f(9)}{4}=\dfrac{827*(-5)+827*(9)}{4}=\dfrac{827(-5+9)}{4}=827

Regards
 
mente oscura said:
Hello.

f(1)=827=827*1

f(2)=1654=827*2

f(3)=2481=827*3

Therefore:

\dfrac{f(-5)+f(9)}{4}=\dfrac{827*(-5)+827*(9)}{4}=\dfrac{827(-5+9)}{4}=827

Regards

Good try! But that isn't correct...sorry!:)
 
We have f(1) = 827 *1, f(2) = 827*2 , f(3) = 827*3

Hence f(x) – 827 x = 0 for x = 1, 2, or 3

So f(x) = a(x-b)(x-1)(x-2)(x-3) + 827 x where b is the 4th zero of f(x)- 827 x

Comparing coefficient of $x^4$ we have a = 1

so f(x) = (x-b)(x-1)(x-2)(x-3) + 827 x

rest is as below

f(9) = (9-b) * 8 * 7 * 6 + 827 * 9 = 336(9-b) + 827 * 9

f(-5) = (-5-b) * (-6) *(-7) * (-8) + 827 * (-5) = 336(5+b) + 827 * (-5)

So (f(9) + f(-5))/4 = (336 * 14 + 827 * (4))/4 = 2003
 
kaliprasad said:
We have f(1) = 827 *1, f(2) = 827*2 , f(3) = 827*3

Hence f(x) – 827 x = 0 for x = 1, 2, or 3

So f(x) = a(x-b)(x-1)(x-2)(x-3) + 827 x where b is the 4th zero of f(x)- 827 x

Comparing coefficient of $x^4$ we have a = 1

so f(x) = (x-b)(x-1)(x-2)(x-3) + 827 x

rest is as below

f(9) = (9-b) * 8 * 7 * 6 + 827 * 9 = 336(9-b) + 827 * 9

f(-5) = (-5-b) * (-6) *(-7) * (-8) + 827 * (-5) = 336(5+b) + 827 * (-5)

So (f(9) + f(-5))/4 = (336 * 14 + 827 * (4))/4 = 2003

Well done, kaliprasad and thanks for participating!
 
anemone said:
Let $f(x)=x^4+px^3+qx^2+rx+s$, where $p,\,q,\,r,\,s$ are real constants. Suppose $f(3)=2481$, $f(2)=1654$, $f(1)=827$.

Determine the value of $\dfrac{f(-5)+f(9)}{4}$.

Define $g(x)=f(x+2)$. Then:
$$g(x)=x^4+Px^3+Qx^2+Rx+S$$
for some real constants $P, Q, R, S$.It follows that:
$$g(0) = S = 1654$$
$$g(1)+g(-1)=(1 + P + Q + R + S) + (1-P+Q-R+S) = 2+2Q+2S = 2481 +827 = 3308$$
$$Q = \frac{3308 - 2 - 2S}{2} = 1653 - S = 1653 - 1654 = -1$$

$$\dfrac{f(-5)+f(9)}{4} = \dfrac{g(-7)+g(7)}{4}
=\frac 1 4 (2\cdot 7^4 + 2 Q\cdot 7^2 + 2S)
=\frac 1 4 (2\cdot 7^4 - 2 \cdot 7^2 + 2\cdot 1654)
=2003$$
 
I like Serena said:
Define $g(x)=f(x+2)$. Then:
$$g(x)=x^4+Px^3+Qx^2+Rx+S$$
for some real constants $P, Q, R, S$.It follows that:
$$g(0) = S = 1654$$
$$g(1)+g(-1)=(1 + P + Q + R + S) + (1-P+Q-R+S) = 2+2Q+2S = 2481 +827 = 3308$$
$$Q = \frac{3308 - 2 - 2S}{2} = 1653 - S = 1653 - 1654 = -1$$

$$\dfrac{f(-5)+f(9)}{4} = \dfrac{g(-7)+g(7)}{4}
=\frac 1 4 (2\cdot 7^4 + 2 Q\cdot 7^2 + 2S)
=\frac 1 4 (2\cdot 7^4 - 2 \cdot 7^2 + 2\cdot 1654)
=2003$$

Bravo, I like Serena! Hey, your method gives me a very good insight on how to define for another function to relate to the given function and use it to our advantage! Thanks for that and thanks for participating.:)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
990
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K