MHB What is the value of $\dfrac{f(-5)+f(9)}{4}$ in the Polynomial Challenge III?

AI Thread Summary
The discussion revolves around finding the value of $\dfrac{f(-5)+f(9)}{4}$ for the polynomial function $f(x)=x^4+px^3+qx^2+rx+s$, given specific values at $f(3)$, $f(2)$, and $f(1)$. Participants share methods to derive the coefficients of the polynomial using the provided function values. The conversation includes attempts to solve the problem, with some users expressing gratitude for insights gained from others' approaches. Ultimately, the focus remains on determining the required value based on the polynomial's characteristics. The challenge encourages collaborative problem-solving and mathematical exploration.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $f(x)=x^4+px^3+qx^2+rx+s$, where $p,\,q,\,r,\,s$ are real constants. Suppose $f(3)=2481$, $f(2)=1654$, $f(1)=827$.

Determine the value of $\dfrac{f(-5)+f(9)}{4}$.
 
Mathematics news on Phys.org
anemone said:
Let $f(x)=x^4+px^3+qx^2+rx+s$, where $p,\,q,\,r,\,s$ are real constants. Suppose $f(3)=2481$, $f(2)=1654$, $f(1)=827$.

Determine the value of $\dfrac{f(-5)+f(9)}{4}$.

Hello.

f(1)=827=827*1

f(2)=1654=827*2

f(3)=2481=827*3

Therefore:

\dfrac{f(-5)+f(9)}{4}=\dfrac{827*(-5)+827*(9)}{4}=\dfrac{827(-5+9)}{4}=827

Regards
 
mente oscura said:
Hello.

f(1)=827=827*1

f(2)=1654=827*2

f(3)=2481=827*3

Therefore:

\dfrac{f(-5)+f(9)}{4}=\dfrac{827*(-5)+827*(9)}{4}=\dfrac{827(-5+9)}{4}=827

Regards

Good try! But that isn't correct...sorry!:)
 
We have f(1) = 827 *1, f(2) = 827*2 , f(3) = 827*3

Hence f(x) – 827 x = 0 for x = 1, 2, or 3

So f(x) = a(x-b)(x-1)(x-2)(x-3) + 827 x where b is the 4th zero of f(x)- 827 x

Comparing coefficient of $x^4$ we have a = 1

so f(x) = (x-b)(x-1)(x-2)(x-3) + 827 x

rest is as below

f(9) = (9-b) * 8 * 7 * 6 + 827 * 9 = 336(9-b) + 827 * 9

f(-5) = (-5-b) * (-6) *(-7) * (-8) + 827 * (-5) = 336(5+b) + 827 * (-5)

So (f(9) + f(-5))/4 = (336 * 14 + 827 * (4))/4 = 2003
 
kaliprasad said:
We have f(1) = 827 *1, f(2) = 827*2 , f(3) = 827*3

Hence f(x) – 827 x = 0 for x = 1, 2, or 3

So f(x) = a(x-b)(x-1)(x-2)(x-3) + 827 x where b is the 4th zero of f(x)- 827 x

Comparing coefficient of $x^4$ we have a = 1

so f(x) = (x-b)(x-1)(x-2)(x-3) + 827 x

rest is as below

f(9) = (9-b) * 8 * 7 * 6 + 827 * 9 = 336(9-b) + 827 * 9

f(-5) = (-5-b) * (-6) *(-7) * (-8) + 827 * (-5) = 336(5+b) + 827 * (-5)

So (f(9) + f(-5))/4 = (336 * 14 + 827 * (4))/4 = 2003

Well done, kaliprasad and thanks for participating!
 
anemone said:
Let $f(x)=x^4+px^3+qx^2+rx+s$, where $p,\,q,\,r,\,s$ are real constants. Suppose $f(3)=2481$, $f(2)=1654$, $f(1)=827$.

Determine the value of $\dfrac{f(-5)+f(9)}{4}$.

Define $g(x)=f(x+2)$. Then:
$$g(x)=x^4+Px^3+Qx^2+Rx+S$$
for some real constants $P, Q, R, S$.It follows that:
$$g(0) = S = 1654$$
$$g(1)+g(-1)=(1 + P + Q + R + S) + (1-P+Q-R+S) = 2+2Q+2S = 2481 +827 = 3308$$
$$Q = \frac{3308 - 2 - 2S}{2} = 1653 - S = 1653 - 1654 = -1$$

$$\dfrac{f(-5)+f(9)}{4} = \dfrac{g(-7)+g(7)}{4}
=\frac 1 4 (2\cdot 7^4 + 2 Q\cdot 7^2 + 2S)
=\frac 1 4 (2\cdot 7^4 - 2 \cdot 7^2 + 2\cdot 1654)
=2003$$
 
I like Serena said:
Define $g(x)=f(x+2)$. Then:
$$g(x)=x^4+Px^3+Qx^2+Rx+S$$
for some real constants $P, Q, R, S$.It follows that:
$$g(0) = S = 1654$$
$$g(1)+g(-1)=(1 + P + Q + R + S) + (1-P+Q-R+S) = 2+2Q+2S = 2481 +827 = 3308$$
$$Q = \frac{3308 - 2 - 2S}{2} = 1653 - S = 1653 - 1654 = -1$$

$$\dfrac{f(-5)+f(9)}{4} = \dfrac{g(-7)+g(7)}{4}
=\frac 1 4 (2\cdot 7^4 + 2 Q\cdot 7^2 + 2S)
=\frac 1 4 (2\cdot 7^4 - 2 \cdot 7^2 + 2\cdot 1654)
=2003$$

Bravo, I like Serena! Hey, your method gives me a very good insight on how to define for another function to relate to the given function and use it to our advantage! Thanks for that and thanks for participating.:)
 
Back
Top