MHB What is the value of x in this equation?

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$(\dfrac {13x-x^2}{x+1})(x+\dfrac{13-x}{x+1})=42$

$find \,\, real \,\, x$
 
Mathematics news on Phys.org
My solution:

Using polynomial division, we get:
\[\left ( \frac{13x-x^2}{x+1} \right )\left ( x+\frac{13-x}{x+1} \right )=\left ( \frac{13x-x^2}{x+1} \right ) \left ( \frac{13+x^2}{x+1} \right )=42 \\\\ \Rightarrow \left (14-\left (x+\frac{14}{x+1} \right ) \right )\left ( -1+\left ( x+\frac{14}{x+1} \right ) \right )=42\]Let $x+\frac{14}{x+1} = \alpha$ and solve the quadratic equation:\[(14-\alpha )(-1+\alpha )=42\Rightarrow -\alpha^2+15\alpha -56 = 0\Rightarrow \alpha \in \left \{ \frac{15\pm 1}{2} \right \}=\left \{ 7,8 \right \}\]Using the $\alpha$-expression, we get:


\[x+\frac{14}{x+1}=7\Rightarrow x^2-6x+7 = 0\Rightarrow x\in \left \{ 3\pm \sqrt{2} \right \} \\\\ x+\frac{14}{x+1}=8 \Rightarrow x^2-7x+6 = 0 \Rightarrow x\in \left \{ 1,6 \right \}\]

- thus the set of solutions is: \[S = \left \{ 1,3-\sqrt{2},3+\sqrt{2},6 \right \}\]
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
4
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K