What is the value of x in this equation?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$(\dfrac {13x-x^2}{x+1})(x+\dfrac{13-x}{x+1})=42$

$find \,\, real \,\, x$
 
Mathematics news on Phys.org
My solution:

Using polynomial division, we get:
\[\left ( \frac{13x-x^2}{x+1} \right )\left ( x+\frac{13-x}{x+1} \right )=\left ( \frac{13x-x^2}{x+1} \right ) \left ( \frac{13+x^2}{x+1} \right )=42 \\\\ \Rightarrow \left (14-\left (x+\frac{14}{x+1} \right ) \right )\left ( -1+\left ( x+\frac{14}{x+1} \right ) \right )=42\]Let $x+\frac{14}{x+1} = \alpha$ and solve the quadratic equation:\[(14-\alpha )(-1+\alpha )=42\Rightarrow -\alpha^2+15\alpha -56 = 0\Rightarrow \alpha \in \left \{ \frac{15\pm 1}{2} \right \}=\left \{ 7,8 \right \}\]Using the $\alpha$-expression, we get:


\[x+\frac{14}{x+1}=7\Rightarrow x^2-6x+7 = 0\Rightarrow x\in \left \{ 3\pm \sqrt{2} \right \} \\\\ x+\frac{14}{x+1}=8 \Rightarrow x^2-7x+6 = 0 \Rightarrow x\in \left \{ 1,6 \right \}\]

- thus the set of solutions is: \[S = \left \{ 1,3-\sqrt{2},3+\sqrt{2},6 \right \}\]
 

Similar threads

Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
4
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K