What is the Velocity of a Body at the Highest Point in Vertical Circular Motion?

Click For Summary
SUMMARY

The discussion focuses on determining the velocity of a body at the highest point in vertical circular motion after breaking off from an inclined groove. The body starts from a height \( h \) and moves into a half-circle of radius \( h/2 \). By applying the conservation of energy principle, the velocity at break-off is derived using the equation \( v^2 = 2g(h-x) \), where \( x \) is the height at break-off. The break-off condition is established through the relationship \( \frac{v^2}{r} = g \sin \theta \), leading to the conclusion that \( x = \frac{5}{6}h \).

PREREQUISITES
  • Understanding of conservation of energy in physics
  • Familiarity with circular motion dynamics
  • Knowledge of basic trigonometry and angles in physics
  • Ability to manipulate equations involving gravitational force
NEXT STEPS
  • Explore the concept of centripetal force in circular motion
  • Learn about energy conservation in different mechanical systems
  • Investigate the effects of friction on motion in inclined planes
  • Study the dynamics of projectile motion after break-off from circular paths
USEFUL FOR

Students of physics, educators teaching mechanics, and anyone interested in understanding the principles of motion in circular trajectories.

DrunkenOldFool
Messages
20
Reaction score
0
A small body $A$ starts sliding from the height $h$ down an inclined groove passing through into a half circle of radius $h/2$. Assuming friction to be negligiable, find the velocity of the body at the highest point of its trajectory(after breaking off the groove).

View attachment 268
 

Attachments

  • Untitled.png
    Untitled.png
    3.3 KB · Views: 124
Physics news on Phys.org
Simply use the energy conversion law.
 
DrunkenOldFool said:
A small body $A$ starts sliding from the height $h$ down an inclined groove passing through into a half circle of radius $h/2$. Assuming friction to be negligiable, find the velocity of the body at the highest point of its trajectory(after breaking off the groove).

https://www.physicsforums.com/attachments/268

1. What is the condition that is satisfied at break-off?

2. What is the velocity and height at break-off?

3. After break-off the horizontal component of velocity is constant, and at greatest height the vertical component of the velocity is zero.

4. The haximum height is determined by conservation of energy. You know the initial energy, it is the potential energy at A. The final energy is the potential energy at the greatest height plus the KE corresponding to the horizontal component of velocity at break-off.

CB
 
Here's one approach to framing the problem:

Let $x$ be the height of the ball at its break-off point
Let

We note that an object will leave its circular orbit when the radial component of the force of gravity becomes greater than the centripetal force required to keep the ball in the circle. That is, the ball will stay on track as long as
$$
\frac{mv^2}{r} \geq mg \sin \theta
$$
Where $v$ is the speed of the ball, $m$ is its mass (which we can cancel out), $r$ is the radius of the circle, $g$ is the acceleration due to gravity near earth, and $\theta$ is the angle that a radius pointing to the ball would make with the horizontal. From the above equation, we can deduce that the break-off point will be the point at which
$$
\frac{v^2}{r} = g \sin \theta
$$
Now, we can make the above solvable for $x$ by using the following substitutions:
$$
\textbf{conservation of energy: }
\frac12 mv^2 = g(h-x)\Rightarrow v^2 = 2g(h-x)\\
\textbf{definition of our angle: }
\sin \theta = \frac{(x-h/2)}{h/2}=4\left(1-\frac x h\right) \\
\textbf{the radius given: }
r = \frac h2
$$

You should find $x = \frac56\, h$. Where could you go from there, using CB's approach?
Hint:
At the point of break-off, the ball's trajectory is perpendicular to the radius. What is the vertical component of velocity at the time of break-off if the ball makes an angle of $\frac{\pi}2-\theta$ with the horizontal?
 
Last edited:

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
5K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 15 ·
Replies
15
Views
4K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K