What is the Velocity of a Person at the Equator?

Click For Summary
SUMMARY

The velocity of a person at the equator can be calculated using the formula v = √((GM/r²) - g) where G is the gravitational constant (6.67259 × 10^-11 Nm²/kg²), M is the mass of the Earth (5.98 × 10^24 kg), r is the radius of the Earth (6.37 × 10^6 m), and g is the acceleration due to gravity (9.8 m/s²). The discussion clarifies that the radius used should be that of the Earth when calculating the velocity of a person at the equator. The final formula derived is v = √(((6.67 × 10^-11 * 5.98 × 10^24) / (6.37 × 10^6)²) - 9.8) * r.

PREREQUISITES
  • Understanding of gravitational force and acceleration
  • Familiarity with Newton's laws of motion
  • Basic knowledge of physics formulas involving mass and radius
  • Ability to manipulate algebraic equations
NEXT STEPS
  • Study the derivation of gravitational force using F = GMm/r²
  • Learn about centripetal acceleration and its relation to circular motion
  • Explore the concept of gravitational potential energy
  • Investigate the differences in gravitational effects on different celestial bodies
USEFUL FOR

Physics students, educators, and anyone interested in understanding gravitational effects and motion at the equator of Earth or other celestial bodies.

nrc_8706
Messages
69
Reaction score
0
:confused: Given: r(Earth)=6.37*10^6 m
m(earth)=5.98*10^24 kg
r(moon)=1.74*10^6m
g=9.8 m/s^2
G=6.67259*10^-11 Nm^2/kg^2

Calculate the speed of a 97.4kg person at the equator.
do u use a=v^2/r v=sqr root (a*r) ?
 
Physics news on Phys.org
Hello?!

Can Anybody Help Me?!
 
\Sigma F = ma_c

... you know that gravity is the force acting towards the center, you know the radius, so you can find the v.
 
...

ok, taking what you said i got that Gravity=m*v^2/r

v=(gr/m)^1/2 correct?
 
which radius do u use? the Earth's or the moon's?
 
where is the person?
 
equartor

he is at the equator
 
of which? the Earth or the moon? which radius does it make sense to use?
 
at the Earth's equator
 
  • #10
yeah, so use the Earth's equator..
 
  • #11
do u use 9.8m/s^2 or 6.67*10^-11
 
  • #12
those are two different things... you can use either, if you know what you're doing.
 
Last edited:
  • #13
F_g - N = m \times \frac {v^2}{r}
\frac{GMm}{r^2} - mg = \frac {mv^2}{r}
\frac{GM}{r^2} - g = \frac{v^2}{r}

now solve for v.

do you understand what i did?
 
Last edited:
  • #14
v=(GM/r^2-g)^1/2


=(((6.67*10^-11*5.98*10^24)/(6.37*10^6)^2)-9.8)^1/2 correct?
 
  • #15
nrc_8706 said:
v=(GM/r^2-g)^1/2
=(((6.67*10^-11*5.98*10^24)/(6.37*10^6)^2)-9.8)^1/2 correct?

there should be an "r"

v=((GM/r^2 - g)*r)^1/2more importantly, do you understand how i got that?
 
Last edited:
  • #16
yes thank you. i knew it had something to do with F=GMm/R^2 i just didnt know what to do. thank for all your help and your patience.
 

Similar threads

Replies
12
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 23 ·
Replies
23
Views
4K
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
891
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
17
Views
2K