What is the volume of the system when inserting the 4-velocity of the observer?

Click For Summary
SUMMARY

The discussion centers on the interpretation of the volume of a system when inserting the 4-velocity of an observer into a rank 2 tensor, specifically in the context of Goldstein's equations (13.72 and 13.73). Participants clarify that "inserting" a vector into a tensor's "slot" refers to contracting the tensor with the vector, and they identify a typo in equation (13.73) regarding the indices of the 4-velocity. The physical dimensions of volume (V) and momentum (p) are also discussed, with V representing the volume of the system and dV as an infinitesimal volume element.

PREREQUISITES
  • Understanding of tensor calculus and rank 2 tensors
  • Familiarity with Goldstein's Classical Mechanics, specifically equations 13.72 and 13.73
  • Knowledge of relativistic physics concepts, including 4-velocity
  • Basic understanding of the energy-stress-momentum tensor
NEXT STEPS
  • Study tensor contraction techniques in detail
  • Review Goldstein's Classical Mechanics for a deeper understanding of equations 13.72 and 13.73
  • Learn about the physical interpretation of the energy-stress-momentum tensor in relativistic contexts
  • Explore the implications of volume elements in integrals related to conservation laws in physics
USEFUL FOR

Students and researchers in theoretical physics, particularly those focusing on classical mechanics and relativistic physics, will benefit from this discussion. It is also valuable for anyone studying tensor calculus and its applications in physics.

StenEdeback
Messages
65
Reaction score
38
Homework Statement
I do not understand the mathematical formula under item 1. at all (and not the other items either).
Relevant Equations
The text says: "1. If we insert the 4-velocity u of the observer into one of the slots...". I do not understand at all. What does it mean that a tensor has "vector slots"? What does "dp/dV" mean? I would like to see the operation step by step.
I have attempted but with no result.
 
Physics news on Phys.org
I do not have read the book but as for vector slots I assume that a rank 2 tensor can be regarded as a 4X4 matrix and one of 4 columns or 4 rows is 4-velocity inserted.
As for dp/dV, what are p and V ? Is p momentum? Is V volume of something ?
 
Last edited:
  • Like
Likes   Reactions: StenEdeback
After Goldsteins eq(13.72) he immediately gives (13.73) as the explicit-component version of the same equation. "Inserting" a vector into a tensor's "slot" means contracting the tensor with the vector. In (13.73), the "contraction" is the implicit summation over the index ##\beta##.

But note that there's a typo in (13.73), at least in my copy of the book. He writes $$T^\alpha_{~\beta} u^\alpha ~=~ T_\beta^{~\alpha} u^\beta ~=~ -\left( \frac{dp^\alpha}{dV} \right) ~.$$ The 1st term should have ##u^\beta##, not ##u^\alpha##.
 
  • Like
Likes   Reactions: StenEdeback
anuttarasammyak said:
I do not have read the book but as for vector slots I assume that a rank 2 tensor can be regarded as a 4X4 matrix and one of 4 columns or 4 rows is 4-velocity inserted.
As for dp/dV, what are p and V ? Is p momentum? Is V volume of something ?
Thank you!
 
strangerep said:
After Goldsteins eq(13.72) he immediately gives (13.73) as the explicit-component version of the same equation. "Inserting" a vector into a tensor's "slot" means contracting the tensor with the vector. In (13.73), the "contraction" is the implicit summation over the index ##\beta##.

But note that there's a typo in (13.73), at least in my copy of the book. He writes $$T^\alpha_{~\beta} u^\alpha ~=~ T_\beta^{~\alpha} u^\beta ~=~ -\left( \frac{dp^\alpha}{dV} \right) ~.$$ The 1st term should have ##u^\beta##, not ##u^\alpha##.
Thank you! I thought so too, though I was a little bewildered by the typo. I will need to do the contraction to see the result. I have tried to do so in my head but not succeeded, probably because I was not sure what "inserting a vector into the slot of a tensor" really meant. Now I can proceed with a little more confidence, using paper and pen when doing the tensor contraction. I do private studies on my own, and sometimes I get stuck, at times for no good reason. Then Physics Forums is my last resort and very valuable to me. Thanks again!
 
  • Like
Likes   Reactions: PhDeezNutz
strangerep said:
He writes T βαuα = Tβ αuβ = −(dpαdV) . The 1st term should have uβ, not uα.
Thanks to your quotes. So V has physical dimension of p/Tu, volume if c=1. What volume is it ?
 
  • Like
Likes   Reactions: StenEdeback
anuttarasammyak said:
Thanks to your quotes. So V has physical dimension of p/Tu, volume if c=1. What volume is it ?
IIUC, ##V## by itself means the volume of the system, and ##dV## is an infinitesimal volume element, as one would find in an integral over some total volume. E.g., in eq(13.34) on p568, in a section about the energy-stress-momentum tensor and conservation laws, he illustrates with: $$R_\mu ~=~ \int T_\mu^{~0} dV$$as an example of an integral quantity which is conserved by virtue of a continuity equation.

In the exercise mentioned in the OP, we've switched to the relativistic case, so ##T_\mu^{~0}## is generalized to ##T^\alpha_{~\beta} u^\beta##. The idea is that an integral over the volume of the system gives the total energy-momentum (IIUC).
 
  • Like
Likes   Reactions: anuttarasammyak and StenEdeback

Similar threads

Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
9
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K