Look, let's try this with a simpler case. Go to Google maps and find your street. How long is your street? How long is it on the map? Is the picture on the map oriented the same as the real street? You can use a map despite all this because you understand that there's a non-trivial relationship between what's shown on the map and reality: you need to rotate, translate, and scale one to get the other. And with a bit of training you could use a Mercator map to navigate around the globe despite that it is a cut and distorted representation of the reality.
But all this seems to desert you when we get to spacetime. An inertial frame of reference is just a choice of t, x, y, and z axes. That's all. If you switch frames you simply pick a different set of axes, just like when you rotate a map on your phone you pick a different set of x and y axes. And just as a strip of land on the map might change from short and wide to long and narrow, the description of some object and duration changes - a long atmosphere and a slow-ticking clock becomes a short atmosphere and a normally ticking clock. But nothing has changed in reality! All you've done is changed the directions you are calling "time" and "space" and updated your descriptions of things to match.
And when you switch to a non-inertial frame you are picking curved lines that you intend to draw on your map as straight. Not only do you now need to rotate, translate, and scale before mapping a Euclidean plane to a Lorentz one you need to also undo the distortion you put in - much like you would have to do with a Mercator map of the Earth. Again, using a distorted map doesn't change anything in reality. It just means that you need a complicated transformation before you can interpret what is drawn on the map.
And this is why
@Dale and I keep on at you about the distinction between coordinate based descriptions and reality.
All of the descriptions involve some transform from reality to the description or the spacetime diagram, be it more complex or less. And you keep talking as if the many different descriptions are the important thing. They aren't. In the muon experiment the angle between worldlines is important, but which worldline you choose to draw vertically on your diagram doesn't matter, but you say "the graph is real and it has real implications". No it isn't and no it doesn't. It just affects how you describe the situation.