What's my mistake in this integration problem?

Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral ##\int_0^{2\pi} \cos^{-1}(\sin(x)) \mathrm{d}x##. Participants explore various methods of integration, including substitution and integration by parts, while addressing the implications of periodic functions on the limits of integration.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant notes that using the substitution ##u = \sin(x)## results in both limits of integration becoming 0, leading to an integral value of 0, which contradicts the graphical representation of the area.
  • Another participant suggests that the new variable in a substitution must represent an interval, indicating a potential flaw in the initial substitution approach.
  • A different approach using integration by parts is presented, leading to an expression that evaluates to ##3\pi^2##, but the participant questions the accuracy of this result.
  • Some participants highlight the periodic nature of the arccosine and sine functions, suggesting that care must be taken when computing derivatives and limits during integration.
  • There is a discussion about splitting the integral into parts based on the behavior of the sine function across different intervals, which could affect the evaluation of ##\mathrm{d}u##.
  • One participant proposes using the identity ##\sin x = \cos(x - \frac \pi 2)## as a potential simplification for the integral.
  • Another participant asserts that the integral evaluates to ##\pi^2##, emphasizing the need to account for the different forms of the integrand across the interval of integration.
  • A graphical interpretation is provided, where the area under the curve of the function is described as a triangle, leading to the conclusion that the area is ##\pi^2##.

Areas of Agreement / Disagreement

Participants express differing views on the evaluation of the integral, with some agreeing on the result of ##\pi^2## while others remain uncertain about the methods used to arrive at this conclusion. The discussion does not reach a consensus on the correct approach or final answer.

Contextual Notes

Participants note the importance of considering the periodicity of the functions involved and the implications for the limits of integration. There are indications of unresolved mathematical steps and the need for careful handling of substitutions.

murshid_islam
Messages
468
Reaction score
21
TL;DR
My calculation of the integral leads to 0 when I do u-substitution. But from the graph of the function, I can see that the area is obviously not 0.
Here's the problem: ##\int_0^{2\pi} \cos^{-1}(\sin(x)) \mathrm{d}x##
If I do the substitution ##u = \sin(x)##, both the limits of integration become 0 and the integral would result in 0. But the graph of the function tells me the area isn't 0. Where am I going wrong?
 
Last edited:
Physics news on Phys.org
murshid_islam said:
TL;DR Summary: My calculation of the integral leads to 0 when I do u-substitution. But from the graph of the function, I can see that the area is obviously not 0.

Here's the problem: ##\int_0^{2\pi} \cos^{-1}(\sin(x)) \mathrm{d}x##
If I do the substitution ##u = \sin(x)##, both the limits of integration become 0 and the integral would result in 0. But the graph of the function tells me the area isn't 0. Where am I going wrong?
The new variable in a substitution must be an interval. Otherwise, with an appropriate substitution you could make the limits equal on any integral.
 
Ok, I tried it with integration by parts with ##u = \cos^{−1}(\sin(x))## and ##\mathrm{d}v = \mathrm{d}x##, which gives us ##\mathrm{d}u = \frac{−\cos(x)}{\sqrt{1−\sin^2 x}}\mathrm{d}x = −\mathrm{d}x## and ##v=x##.
The integral becomes ##x\cos^{−1}(\sin(x)) + \int x \mathrm{d}x = x\cos^{-1}(\sin(x)) + \frac{x^2}{2} + C##
Evaluating that from 0 to ##2\pi##, we get ##\left(2\pi\cos^{−1}(0) − 0\right) + \frac{1}{2}\left(4\pi^2 − 0\right) = \pi^2 + 2\pi^2 = 3\pi^2##

But the actual answer seems to be ##\pi^2##. What am I missing?
 
That arccos is periodic, of period exactly ##2\pi## and that also sin is periodic. So you must be careful when computing the derivative of ##u## between the limits.
 
dextercioby said:
That arccos is periodic, of period exactly ##2\pi## and that also sin is periodic. So you must be careful when computing the derivative of ##u## between the limits.
The range of sin(x) is the interval [-1, 1], which is also the domain of arccos(x). I'm not being able to figure out how that will affect ##\mathrm{d}u##. What will ##\mathrm{d}u## be if ##u = \arccos(\sin x)##?
 
Last edited:
murshid_islam said:
The range of sin(x) is the interval [-1, 1], which is also the domain of arccos(x). I'm not being able to figure out how that will affect ##\mathrm{d}u##. What will ##\mathrm{d}u## be if ##u = \arccos(\sin x)##?
You have to split the integral, so that ##u## in each case takes values from a simple interval. We look at the values of ##\sin x##:

##x \in [0, \frac \pi 2]## gives ##\sin x \in [0, 1]##
##x \in [\frac \pi 2, \frac {3\pi} 2]## gives ##\sin x \in [1, -1]##
##x \in [\frac {3\pi} 2, 2\pi]## gives ##\sin x \in [-1, 0]##

To illustrate the point. Consider the integral: ##\int_0^1 x \ dx## and use the substitution ##u = x(1-x)##. This transforms the integeral to: ##\int_0^0 f(u) \ du## for some function ##f##, which you can work out. But, we've screwed the limits on the integral.
 
What about using ##\sin x = \cos(x - \frac \pi 2)##?
 
murshid_islam said:
But the actual answer seems to be ##\pi^2##. What am I missing?
I agree with the answer ##\pi^2##. As above, the integrand takes a different form across the interval of integration. So, you have to identify this and split the integral up.
 
Here's a quick way. Note that the function ##\cos^{-1}(\cos x)## has period ##2\pi##:

For ##x \in [0, \pi]## we have ##\cos^{-1}(\cos x) = x##

For ##x \in [\pi, 2\pi]## we have ##\cos^{-1}(\cos x) = 2\pi - x##

A graph of this function is a triangle of base ##2\pi## and height ##\pi##, hence area ##\pi^2##. Hence:
$$\int_0^{2\pi} \cos^{-1}(\cos x) \ dx = \pi^2$$As the function is periodic, for any ##a##, we have:
$$\int_a^{a + 2\pi} \cos^{-1}(\cos x) \ dx = \pi^2$$Finally, using ##\sin x = \cos (x - \frac \pi 2)##, we have:
$$\int_0^{2\pi} \cos^{-1}(\sin x) \ dx = \int_0^{2\pi} \cos^{-1}(\cos(x - \frac \pi 2)) \ dx$$$$= \int_{-\frac \pi 2}^{\frac {3\pi} 2} \cos^{-1}(\cos u) \ du = \pi^2$$
 
  • Like
Likes   Reactions: berkeman and dextercioby

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K