When and why can ∂p/∂t=0 in position space?

  • Context: Undergrad 
  • Thread starter Thread starter George Keeling
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the conditions under which the time derivative of an observable, specifically the expectation value of the product of position and momentum operators, can be considered zero in the context of quantum mechanics, particularly in the Schrödinger picture. Participants explore the implications of operator independence from time and the mathematical treatment of derivatives in this framework.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant seeks to prove that the expectation value of the observable vanishes, questioning the treatment of time derivatives in the context of position space.
  • Another participant notes that in the Schrödinger picture, operators do not have explicit time dependence, suggesting that the time derivative of the observable is zero.
  • There is a discussion about the mathematical distinction between different forms of time derivatives acting on products of operators and functions, with some participants interpreting the operations differently.
  • Concerns are raised about the independence of operators from time, with one participant expressing uncertainty about how to determine this for specific operators.
  • References are made to specific equations and theorems from Griffiths & Schroeter, including Ehrenfest's theorem, which relates time evolution of expectation values to commutation relations with the Hamiltonian.
  • Some participants express disagreement over the interpretation of the mathematical expressions involved, particularly regarding the treatment of operators and their derivatives.

Areas of Agreement / Disagreement

Participants exhibit disagreement regarding the interpretation of time derivatives in the context of operator products and the implications for the expectation value. There is no consensus on the correct approach to the problem, and multiple competing views remain.

Contextual Notes

Participants highlight the importance of distinguishing between different forms of mathematical expressions and the implications of operator independence from time in the Schrödinger picture. The discussion reveals uncertainties about the application of standard conventions in quantum mechanics.

George Keeling
Gold Member
Messages
183
Reaction score
42
TL;DR
When and why can I avoid expanding momentum as derivative operator (in position space) and treat it as an independent variable? So ∂p/∂t=0
I'm doing Griffiths & Schroeter Problem 3.37 and I would like to prove that the expectation value of a rather peculiar observable vanishes:
$$\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle=0$$My cheat sheet expands the LHS to an integral and continues …
$$\int{\Psi^\ast\frac{\partial}{\partial t}\left(xp\right)\Psi d x}=\int{\Psi^\ast\left(0\right)\Psi d x}=0$$but, along with ##\Psi\left(x,t\right)##, we are in position space so should be setting
$$\hat{p}=-i\hbar\frac{\partial}{\partial x}$$so the interesting term becomes
$$-i\hbar\frac{\partial}{\partial t}\left(x\frac{\partial\Psi}{\partial x}\right)=-i\hbar\left(\frac{\partial x}{\partial t}\frac{\partial\Psi}{\partial x}+x\frac{\partial^2\Psi}{\partial t\partial x}\right)$$
The first part vanishes because ##\frac{\partial x}{\partial t}=0## but the second doesn't.

It's a bit tempting to say that ##x,p,t## are all independent variables so that
$$\frac{\partial}{\partial t}\left(xp\right)=\frac{\partial x}{\partial t}p+x\frac{\partial p}{\partial t}=0+0$$but I don't see why you can do that in this case. Or can you? If so why?
 
Physics news on Phys.org
Well, it is a weird problem setup to begin with when you are working in the Schrödinger picture. There is no time dependence in the operators so the derivative with respect to time is clearly zero. On the mathematical operations side of things, there has to be some care about what the time derivative is action on.

##\frac{\partial}{\partial t}\left(\hat{A}\left(\hat{B}f(x,t)\right)\right)##

is different than

## \left(\frac{\partial}{\partial t}\left(\hat{A}\hat{B}\right)\right)f(x,t)##

I interpret your problem as using the latter, whereas your calculation assumes the former.
 
Is there a Hamiltonian
George Keeling said:
TL;DR Summary: When and why can I avoid expanding momentum as derivative operator (in position space) and treat it as an independent variable? So ∂p/∂t=0

I'm doing Griffiths & Schroeter Problem 3.37 and I would like to prove that the expectation value of a rather peculiar observable vanishes:
$$\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle=0$$My cheat sheet expands the LHS to an integral and continues …
$$\int{\Psi^\ast\frac{\partial}{\partial t}\left(xp\right)\Psi d x}=\int{\Psi^\ast\left(0\right)\Psi d x}=0$$but, along with ##\Psi\left(x,t\right)##, we are in position space so should be setting
$$\hat{p}=-i\hbar\frac{\partial}{\partial x}$$so the interesting term becomes
$$-i\hbar\frac{\partial}{\partial t}\left(x\frac{\partial\Psi}{\partial x}\right)=-i\hbar\left(\frac{\partial x}{\partial t}\frac{\partial\Psi}{\partial x}+x\frac{\partial^2\Psi}{\partial t\partial x}\right)$$
The first part vanishes because ##\frac{\partial x}{\partial t}=0## but the second doesn't.

It's a bit tempting to say that ##x,p,t## are all independent variables so that
$$\frac{\partial}{\partial t}\left(xp\right)=\frac{\partial x}{\partial t}p+x\frac{\partial p}{\partial t}=0+0$$but I don't see why you can do that in this case. Or can you? If so why?
Which edition is this? I could not find it. In the 3ed there is a similar problem in 3.37 but the ##\frac{\mathrm d}{\mathrm d t}## is outside of the angle brackets and leads to the virial theorem.
 
pines-demon said:
Is there a Hamiltonian

Which edition is this? I could not find it. In the 3ed there is a similar problem in 3.37 but the ##\frac{\mathrm d}{\mathrm d t}## is outside of the angle brackets and leads to the virial theorem.
Mine is the third edition. We get to ##\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle=0## after using equation 3.73. Hamiltonian comes into it.
 
Haborix said:
I interpret your problem as using the latter, whereas your calculation assumes the former.
So I think what you are saying is that the 'interesting term' should be
$$-i\hbar\left[\frac{\partial}{\partial t}\left(x\frac{\partial}{\partial x}\right)\right]\Psi$$and so, as the part in square brackets contains no ##t##s, it vanishes when differentiated. I disagree. I would expand the square brackets as
$$\frac{\partial}{\partial t}\left(x\frac{\partial}{\partial x}\right)=\frac{\partial x}{\partial t}\frac{\partial}{\partial x}+x\frac{\partial^2}{\partial t\partial x}=x\frac{\partial^2}{\partial t\partial x}$$so I end up with the same result as I had before. Bracketing the operators is really immaterial. Just like matrix operators, they are associative.
 
It is fine to disagree, but it puts you at odds with standard conventions.
 
  • Informative
Likes   Reactions: George Keeling
George Keeling said:
Mine is the third edition.
This is problem 3.37 from the 3ed:
Screenshot 2024-05-07 at 17.43.24.png

The time derivative is outside the angle brackets in Eq. (3.112).
Note that it says that for a stationary state the ##\mathrm d \langle \hat x\hat p\rangle /\mathrm d t=0##, not what you wrote.
George Keeling said:
We get to ##\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle=0## after using equation 3.73. Hamiltonian comes into it.
Equation 3.73 is Ehrenfest's theorem:
$$\frac{d}{dt}\langle \hat Q\rangle = \frac{i}{\hbar}\langle [\hat H,\hat Q] \rangle+ \left\langle \frac{\partial \hat Q}{\partial t}\right\rangle$$
if you want to replace operator ##\hat Q## with ##\hat x\hat p## you have to take into account both terms in the right hand side of 3.73. If the question is "do ##\hat x## and ##\hat p## are independent of time (in Schrödinger's picture)?" the answer is yes.
 
Last edited:
  • Like
Likes   Reactions: dextercioby, Demystifier and George Keeling
Haborix said:
It is fine to disagree, but it puts you at odds with standard conventions.
To begin with I thought you meant politeness conventions and I had offended you :cry:
But on further reflection I think you mean Schrödinger picture conventions which I am having difficulty getting used to. Thanks.
I was using that famous product rule convention in calculus.
 
pines-demon said:
if you want to replace operator ##\hat Q## with ##\hat x\hat p## you have to take into account both terms in the right hand side of 3.73. If the question is "do ##\hat x## and ##\hat p## are independent of time (in Schrödinger's picture)?" the answer is yes.
That's exactly what I was doing so that makes ##\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle=0##

I have also now found and read Schrödinger's picture. "operators (observables and others) are mostly constant with respect to time (an exception is the Hamiltonian which may change if the potential ##V## changes)". Well I never.

I'm a bit worried that operators are mostly constant with respect to time. How can I be sure about a particular operator, except by asking you guys?
 
  • #10
George Keeling said:
I'm a bit worried that operators are mostly constant with respect to time. How can I be sure about a particular operator, except by asking you guys?
If there is not explicit time dependence, then the operator is independent of time.
 
  • Informative
  • Like
Likes   Reactions: pines-demon and George Keeling
  • #11
George Keeling said:
To begin with I thought you meant politeness conventions and I had offended you :cry:
But on further reflection I think you mean Schrödinger picture conventions which I am having difficulty getting used to. Thanks.
I was using that famous product rule convention in calculus.
Ha! You are perfectly polite.

I think the Schrödinger picture only make the issue simple if the derivative with respect to time is just a derivative of operators, not a derivative of the result of operators applied to a state. For example, it is the difference between:

##\frac{\partial}{\partial t}\begin{pmatrix} a & b \\ c & d \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}##

and

##\frac{\partial}{\partial t}\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x(t) \\ y(t)\end{pmatrix}\right) =\begin{pmatrix} ax'(t) + by'(t) \\ cx'(t) + dy'(t) \end{pmatrix} ##

To me, the issue seems to be about interpreting a mathematical expression. I think you interpret the expression in your original post as the latter, whereas it should be the former.
 
  • Like
Likes   Reactions: George Keeling and pines-demon
  • #12
I think the problem is due to the hats in the expectation value expression. In my book one normally has no hats: ##\left\langle Q\right\rangle## not ##\left\langle\hat{Q}\right\rangle##. ##Q## is an observable and ##\hat{Q}## is its operator. Where I started from was
$$\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle=0\ ?$$If I had started with
$$\left\langle\frac{\partial}{\partial t}\left(xp\right)\right\rangle$$then I would have got
$$\left\langle\frac{\partial}{\partial t}\left(xp\right)\right\rangle=\int{\Psi^\ast\frac{\partial}{\partial t}\left[x\left(-i\hbar\frac{\partial}{\partial x}\right)\Psi\right]dx}$$which leads to the mess I got in.

But with hats I get (following @Haborix)
$$\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle=\int{\Psi^\ast\left[\frac{\partial}{\partial t}\left(x\left(-i\hbar\frac{\partial}{\partial x}\right)\right)\right]\Psi d x}=\int{\Psi^\ast\left[0\right]\Psi d x}$$and using @Claude's rule.

I'm not sure it's even proper to expand ##\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle## perhaps one should just say that
$$\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)=0\Rightarrow\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle=\left\langle0\right\rangle=0$$

Thanks for your patience!
 
  • #13
George Keeling said:
I think the problem is due to the hats in the expectation value expression.
I'm not sure I understand. The only mathematical quantity involved is the operator ##\hat{Q}##. The "observable" ##Q## is not something you can do math with, so I don't understand how you could even make sense of an expression like ##\partial / \partial t (x p)## (without the hats).
 
  • #14
PeterDonis said:
The "observable" ##Q## is not something you can do math with
The problem from the book (post #7) asked to show something about
$$\frac{d}{dt}\left\langle x p\right\rangle$$so I suppose that means an observable that is two other observables multiplied together. So it looks like Griffiths can do math with observables. After that, observing its rate of change is not a stretch?
 
  • #15
George Keeling said:
I suppose that means an observable that is two other observables multiplied together.
I would be more inclined to suppose that the operators representing those observables are what is meant, since we know how to multiply operators, but I have no idea what it would mean to multiply observables if that doesn't mean multiplying the operators that represent them. Unfortunately I don't have a copy of Griffiths handy to check the context. But since assuming that ##xp## somehow represents something other than operators is what got you into trouble, it seems to me that the simplest way out of trouble would be to treat them as operators.
 
  • #16
For the record, ##xp## with or without hats is not an observable, because it can't be represented directly by a selfadjoint operator, but only through a symmetrization trick

$$ xp = \frac{1}{2} (xp+px) $$ at classical level, then the operator for the RHS is a representation of an observable.
 
  • Like
Likes   Reactions: pines-demon

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 56 ·
2
Replies
56
Views
5K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K