cuak2000
- 7
- 0
Hi. I have two questions, one general and one particular.
1) The general one is if you know or can give me a reference of when can I change the order of a probability limit and the pointwise limit of a function (assuming both plim and lim exist)
Say, take a sequence X_n(k) of i.i.d. random variables that are a function of some variable k. In what case is
<br /> plim_{n \rightarrow \infty }(lim_{k \rightarrow \infty} X_n(k) ) = lim_{k \rightarrow \infty }(plim_{n \rightarrow \infty} X_n(k) )
2) The particular one is: if I know that
lim_{k \rightarrow \infty }(plim_{n \rightarrow \infty} X_n(k) ) = \infty
can I assure also that
plim_{n \rightarrow \infty }(lim_{k \rightarrow \infty} X_n(k) ) = \infty ??
(i realize using infinity here is rather sloppy, but I hope it doesn't cause confusion)
Thanks for your help!
1) The general one is if you know or can give me a reference of when can I change the order of a probability limit and the pointwise limit of a function (assuming both plim and lim exist)
Say, take a sequence X_n(k) of i.i.d. random variables that are a function of some variable k. In what case is
<br /> plim_{n \rightarrow \infty }(lim_{k \rightarrow \infty} X_n(k) ) = lim_{k \rightarrow \infty }(plim_{n \rightarrow \infty} X_n(k) )
2) The particular one is: if I know that
lim_{k \rightarrow \infty }(plim_{n \rightarrow \infty} X_n(k) ) = \infty
can I assure also that
plim_{n \rightarrow \infty }(lim_{k \rightarrow \infty} X_n(k) ) = \infty ??
(i realize using infinity here is rather sloppy, but I hope it doesn't cause confusion)
Thanks for your help!