Undergrad When is a subset a subspace in a vector space?

  • Thread starter Thread starter Kaguro
  • Start date Start date
  • Tags Tags
    Subspace
Click For Summary
SUMMARY

The discussion centers on the conditions under which a subset ##\mathbb{W}## of a vector space ##\mathbb{V}## qualifies as a subspace. It is established that if ##\mathbb{W}## is non-empty and closed under addition and scalar multiplication, then it is a subspace of ##\mathbb{V}##. The critical properties of vector spaces, particularly the existence of the additive identity and additive inverses, are verified through shared operations between ##\mathbb{W}## and ##\mathbb{V}##. The confusion arises regarding the implication that if ##\vec{0}## is in ##\mathbb{V}##, it must also be in ##\mathbb{W}##, which is clarified through the understanding of scalar multiplication and the properties of subsets.

PREREQUISITES
  • Understanding of vector spaces and their properties
  • Familiarity with scalar multiplication and addition in vector spaces
  • Knowledge of subsets and their properties in mathematics
  • Basic comprehension of mathematical proofs and logical reasoning
NEXT STEPS
  • Study the properties of vector spaces in detail, focusing on closure under operations
  • Learn about the implications of scalar multiplication in vector spaces
  • Explore examples of subspaces within various vector spaces
  • Investigate the role of the additive identity and inverses in vector spaces
USEFUL FOR

Students of linear algebra, mathematicians, and educators seeking to deepen their understanding of vector spaces and subspaces, particularly in the context of mathematical proofs and properties.

Kaguro
Messages
221
Reaction score
57
Let ##\mathbb{V}## be a vector space and ##\mathbb{W}## be a subset of ##\mathbb{V}##, with the same operations.

Claim:
If ##\mathbb{W}## is non-empty, closed under addition and scalar multiplication, then ##\mathbb{W}## is a subspace of ##\mathbb{V}##.

A set is a vector space if it satisfies 10 properties:

  1. Closure under addition
  2. Closure under scalar multiplication
  3. Commutativity under addition
  4. Associativity under addition
  5. Existence of additive identity
  6. Existence of additive inverse
  7. Distributivity for scalar multiplication over addition in scalars
  8. Distributivity for scalar multiplication over addition in vectors
  9. Associativity under scalar multiplication
  10. Identity for scalar multiplication

The properties 1 and 2 are given. 3,4,7,8,9,10 are easily verified as ##\mathbb{W}## and ##\mathbb{V}## share same operations. For example 3:

Let ##\vec u , \vec v \epsilon \mathbb{W}##
$$ \vec u + \vec v (in~ \mathbb{W}) \\
= \vec u + \vec v (in~ \mathbb{V}) \text{(same operation)} \\
= \vec v + \vec u (in~ \mathbb{V}) (\mathbb{V} \text{is a vector space.)} \\
= \vec v + \vec u (in~ \mathbb{W}) ~\text{(same operation)} \\
$$

The problem is 5 and 6.
The book I'm using ( S. Andrilli and D. Hecker) says:-

Let ##\vec u~ \epsilon ~\mathbb{W}##
$$ \Rightarrow~~ 0\vec u ~ \epsilon ~\mathbb{W} ~\text{(closed under scalar multiplication.)}\\
\Rightarrow ~~ 0\vec u ~ \epsilon ~ \mathbb{V} ~\text{(property of subset)}\\
\Rightarrow ~~ \vec 0 ~\epsilon ~ \mathbb{V} ~\text{(property of vector space. Which we proved earlier.)}\\
\Rightarrow ~~ \vec 0 ~ \epsilon ~ \mathbb{W}~ \text{(as they share the same operations)}$$

what??

How can same operations imply that if ##\vec 0## is in ##\mathbb{V}## it also must be in ##\mathbb{W}## ??
 
Physics news on Phys.org
Kaguro said:
Let ##\mathbb{V}## be a vector space and ##\mathbb{W}## be a subset of ##\mathbb{V}##, with the same operations.

Claim:
If ##\mathbb{W}## is non-empty, closed under addition and scalar multiplication, then ##\mathbb{W}## is a subspace of ##\mathbb{V}##.

A set is a vector space if it satisfies 10 properties:

  1. Closure under addition
  2. Closure under scalar multiplication
  3. Commutativity under addition
  4. Associativity under addition
  5. Existence of additive identity
  6. Existence of additive inverse
  7. Distributivity for scalar multiplication over addition in scalars
  8. Distributivity for scalar multiplication over addition in vectors
  9. Associativity under scalar multiplication
  10. Identity for scalar multiplication

The properties 1 and 2 are given. 3,4,7,8,9,10 are easily verified as ##\mathbb{W}## and ##\mathbb{V}## share same operations. For example 3:

Let ##\vec u , \vec v \epsilon \mathbb{W}##
$$ \vec u + \vec v (in~ \mathbb{W}) \\
= \vec u + \vec v (in~ \mathbb{V}) \text{(same operation)} \\
= \vec v + \vec u (in~ \mathbb{V}) (\mathbb{V} \text{is a vector space.)} \\
= \vec v + \vec u (in~ \mathbb{W}) ~\text{(same operation)} \\
$$

The problem is 5 and 6.
The book I'm using ( S. Andrilli and D. Hecker) says:-

Let ##\vec u~ \epsilon ~\mathbb{W}##
$$ \Rightarrow~~ 0\vec u ~ \epsilon ~\mathbb{W} ~\text{(closed under scalar multiplication.)}\\
\Rightarrow ~~ 0\vec u ~ \epsilon ~ \mathbb{V} ~\text{(property of subset)}\\
\Rightarrow ~~ \vec 0 ~\epsilon ~ \mathbb{V} ~\text{(property of vector space. Which we proved earlier.)}\\
\Rightarrow ~~ \vec 0 ~ \epsilon ~ \mathbb{W}~ \text{(as they share the same operations)}$$

what??

How can same operations imply that if ##\vec 0## is in ##\mathbb{V}## it also must be in ##\mathbb{W}## ??

If ##W## is closed under scalar multiplication and it is non-empty then ##\exists \ \vec{w} \in W## and ##0 \vec{w} = \vec{0} \in W##.

An important subtlety is that you know that ##0 \vec{w} = \vec{0}## because ##W \subset V## and this property holds for all vectors in ##V##, hence all vectors in ##W##.

You can show that ##-\vec{w} \in W## by a similar argument with the scalar ##-1##.
 
PeroK said:
If WW is closed under scalar multiplication, and it is non-empty then ∃ →w∈W\exists \ \vec{w} \in W and 0→w=→0∈W0 \vec{w} = \vec{0} \in W.

That's the problem, I don't know that 0##\vec w = \vec 0## in W because it is not a Vector Space yet.
 
Kaguro said:
The problem is 5 and 6.
The book I'm using ( S. Andrilli and D. Hecker) says:-

Let ##\vec u~ \epsilon ~\mathbb{W}##
$$ \Rightarrow~~ 0\vec u ~ \epsilon ~\mathbb{W} ~\text{(closed under scalar multiplication.)}\\
\Rightarrow ~~ 0\vec u ~ \epsilon ~ \mathbb{V} ~\text{(property of subset)}\\
\Rightarrow ~~ \vec 0 ~\epsilon ~ \mathbb{V} ~\text{(property of vector space. Which we proved earlier.)}\\
\Rightarrow ~~ \vec 0 ~ \epsilon ~ \mathbb{W}~ \text{(as they share the same operations)}$$

what??

How can same operations imply that if ##\vec 0## is in ##\mathbb{V}## it also must be in ##\mathbb{W}## ??
What is said here is, that ##0_\mathbb{V} = 0 \cdot w =: 0_\mathbb{W}## is the same vector.
 
  • Like
Likes PeroK
Kaguro said:
That's the problem, I don't know that 0##\vec w = \vec 0## in W because it is not a Vector Space yet.

PeroK said:
An important subtlety is that you know that ##0 \vec{w} = \vec{0}## because ##W \subset V## and this property holds for all vectors in ##V##, hence all vectors in ##W##.
 
  • Like
Likes Kaguro
Oh! Of course..
Now when you put it this way, it seems clear!

Thank you both!:smile:
 
Kaguro said:
Let ##\vec u~ \epsilon ~\mathbb{W}##
$$ \Rightarrow~~ 0\vec u ~ \epsilon ~\mathbb{W} ~\text{(closed under scalar multiplication.)}\\
\Rightarrow ~~ 0\vec u ~ \epsilon ~ \mathbb{V} ~\text{(property of subset)}\\
\Rightarrow ~~ \vec 0 ~\epsilon ~ \mathbb{V} ~\text{(property of vector space. Which we proved earlier. ***)}\\
\Rightarrow ~~ 0\vec u = \vec{0} ~\text{(property of vector space. Which we proved earlier.+++)}\\\Rightarrow ~~ \vec 0 ~ \epsilon ~ \mathbb{W}~ \text{(as they share the same operations)}$$

Actually, I would say this is not quite right. I would replace the statement marked *** with the one marked +++.
 
PeroK said:
Actually, I would say this is not quite right. I would replace the statement marked *** with the one marked +++.
Yes, the for all elements is the important thing.
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K