B Where Are the To-Scale Diagrams of Alpha Centauri's Orbits?

Click For Summary
The discussion highlights the absence of to-scale diagrams for the Alpha Centauri triple star system, despite its intriguing nature as our closest stellar neighbor. Participants express surprise that no one has created a photographic time-lapse of lunar libration or a detailed orbital diagram for Alpha Centauri, given the system's complexity. The challenges of accurately representing the vast distances and sizes involved make such diagrams rare and difficult to produce. Comparisons are made to the solar system's orbital diagrams, which also face similar scarcity issues. Overall, the conversation reveals a shared curiosity about the representation of celestial mechanics and the practical limitations of visualizing such expansive astronomical concepts.
Warp
Messages
139
Reaction score
15
I sometimes get surprised by things that do not seem to exist in this world. For example, as far as I know, nobody has ever, during the entire history of photography, made a photographic time-lapse of lunar libration. There are plenty of computer renderings, but no photographic time-lapse showing the real thing. One would think that it's a topic interesting enough for at least someone to attempt, but apparently not. (If such a time-lapse exists, I have not found it.)

Ok, maybe getting good-quality photographs of the Moon every night for an entire month is too difficult. However, sometimes things don't seem to exist that should be much, much simpler.

Alpha Centauri is a rather interesting star system in that it's a triple star system, with two of the stars orbiting each other relatively close, and the third one orbiting them really, really far away. In order to get an idea of how far away, I would like to see a to-scale orbit diagram of the Alpha Centauri triple star system.

If such a picture exists, I have been unable to find it. It baffles my mind a bit why not. Is our closest stellar neighbor being a triple star system such a boring subject that nobody has bothered even just drawing a diagram (at least one that's to-scale)?

Well, considering how hard it is to find a diagram of the solar system orbits to-scale (they exist, but they seem to be quite a rarity) I suppose I shouldn't be that surprised.
 
Astronomy news on Phys.org
As @Baluncore points out, it's only very recently that it has been determined that Proxima Centauri even has an orbit. But let's work some numbers. If Proxima's radius is one pixel, it's orbit is about 12 million pixels. So you need a 3000K monitor to display it. Not 3K. 3000K. 150 trillion pixels.

Not going to happen any time soon.
 
  • Like
Likes Dragrath, phinds and Ibix
Having personally travelled* between the A and B stars and Proxima Centauri, I can tell you that it is faaaar and takes almost an hour even when flying a fictional superluminal spaceship.

* The computer game Elite: Dangerous takes place in a 1:1 procedurally generated replica of the galaxy. While most star systems are the results of a procedural engine, a good chunk of real systems have been placed in the game by hand (particularly of course the Sol system and other relatively nearby systems). One of those systems is Alpha Centauri so that is a pretty accurate to-scale rendition of that system. The A and B stars are not really distinguishable from the background when you are at Proxima.

In-game trivia:
The long trek from the A and B stars to Proxima is known as the Hutton run after a small orbital outpost Hutton orbital at Proxima. Making the Hutton run is considered a bit of a rite of initiation and there is a standing prank to try to convince new players that you can obtain one of the game’s most expensive ships for free at Hutton orbital.
 
  • Like
Likes russ_watters and Ibix
Vanadium 50's approach is a good one for this kind of diagram. Set a sensible size for the image of the smallest thing and see how big the largest thing is. Weakening his assumptions slightly and allowing that you're only interested in the orbits and not the stars, the Wiki page provided above says that A and B are between 11 and 35 AU apart and C is 13,000 AU away. Let's say we draw A and B's orbit as a 1mm × 3.5mm ellipse (and note that Pluto's orbit is comparable to this size). Then C is about 1.18m away on that scale. So that diagram is an ellipse a man could fit inside with a large grain of salt in the middle somewhere.

And that's why you don't see diagrams to scale. The ratios between the sizes of things of interest are crazy.
 
Last edited:
  • Like
Likes phinds and Vanadium 50
Warp said:
Alpha Centauri is a rather interesting star system in that it's a triple star system, with two of the stars orbiting each other relatively close, and the third one orbiting them really, really far away. In order to get an idea of how far away, I would like to see a to-scale orbit diagram of the Alpha Centauri triple star system.
What exactly do you want drawn on your diagram? Just their orbits? Their orbits compared to their sizes? Their orbits compared to the distance between the Sun and the other 3 stars?
 
As another relative example, using a common desktop screen resolution of 100 pixels-per-inch:

If the Earth is one pixel in size and you wish to show its complete orbit around the Sun, the screen size would be about 9 feet, or 2.75 meters, square.

If printed at 600 PPI, the paper would be 1.5 feet, or .46 meters square.

The above numbers assume a circular orbit of 93,000,000 miles diameter, however our orbit is about 1.6% eccentric, so add 1.6% to the above estimates.

So... you would have to remove your picture window to get the screen into the living room, and maybe raise your ceiling. If you use a 'rule-of-thumb' viewing distance being the screen diagonal, you would be 12.75 feet, 3.9 meters, away. That gives the angular size of that 1-pixel Earth being 0.22 arcseconds. Since the human eye can resolve around 0.7 to 1 arcsecond, you would not be able to see that Earth.

That's why to-scale orbital diagrams are somewhat scarce.

(As you may guess, I was getting bored and looking for something to do. :oldeyes:)
 
Orodruin said:
* The computer game Elite: Dangerous takes place in a 1:1 procedurally generated replica of the galaxy. While most star systems are the results of a procedural engine, a good chunk of real systems have been placed in the game by hand (particularly of course the Sol system and other relatively nearby systems). One of those systems is Alpha Centauri so that is a pretty accurate to-scale rendition of that system. The A and B stars are not really distinguishable from the background when you are at Proxima.
And that´s inaccurate.
Proxima is approximately 20 times closer to AB than Sun is.
https://en.wikipedia.org/wiki/Alpha...n,_Alpha_Centauri_AB_and_Proxima_Centauri.png
Note some nasty errors here. No proper error bars for the Proxima-AB distance. And I doubt that the Sun-Proxima-AB angle is known to minutes, let alone seconds!
In terms of magnitude, AB is about 6,5 magnitudes brighter from Proxima than Sun. A is about -6,5, B is -5,2. Both are brighter than Venus from Earth (-4,4). They are also far brighter than the fixed stars - the brightest fixed star from Proxima is Sirius, too, but at -1,2 dimmer than from Sun. Sun is +0,5 - conspicuous but comparable to Betelgeuse, Procyon or Beta Centauri. In the sky of Proxima b, Alpha Centauri AB are by far the brightest objects after Proxima and Proxima d

In terms of separation from each other... From Sun, AB true maximum separation is 26 seconds, but due to inclination and argument of apsides, the apparent maximum is just about 22 seconds and apparent minimum 1,7 seconds. What precisely is AB-s apparent orbit as viewed from Proxima - inclination, maximum and minimum separation, epochs? A separation in the region of 7...8 minutes would be easy for naked eye! It is quarter the width of full Moon.
 
Last edited:
snorkack said:
And that´s inaccurate.
Proxima is approximately 20 times closer to AB than Sun is.
https://en.wikipedia.org/wiki/Alpha...n,_Alpha_Centauri_AB_and_Proxima_Centauri.png
Note some nasty errors here. No proper error bars for the Proxima-AB distance. And I doubt that the Sun-Proxima-AB angle is known to minutes, let alone seconds!
In terms of magnitude, AB is about 6,5 magnitudes brighter from Proxima than Sun. A is about -6,5, B is -5,2. Both are brighter than Venus from Earth (-4,4). They are also far brighter than the fixed stars - the brightest fixed star from Proxima is Sirius, too, but at -1,2 dimmer than from Sun. Sun is +0,5 - conspicuous but comparable to Betelgeuse, Procyon or Beta Centauri. In the sky of Proxima b, Alpha Centauri AB are by far the brightest objects after Proxima and Proxima d
In terms of separation from each other... From Sun, AB true maximum separation is 26 seconds, but due to inclination and argument of apsides, the apparent maximum is just about 22 seconds and apparent minimum 1,7 seconds. What precisely is AB-s apparent orbit as viewed from Proxima - inclination, maximum and minimum separation, epochs? A separation in the region of 7...8 minutes would be easy for naked eye! It is quarter the width of full Moon.
I think you just read way too much into the ”not distinguishable from background stars” part.
 
  • Like
Likes Vanadium 50
  • #11
The libration stuff is a continuation of his previous thread here. https://www.physicsforums.com/threads/lunar-libration-time-lapse-with-real-photographs.1010877/

That thread was a drive-by: after the initial post, the OP lost interest. I suspect it will be similar with this thread.
russ_watters said:
You didn't google it, did you?
Easier to toss a stink bomb and run. :wink: But it might be better to separate the stink bombs.

And since this thread is now completely off the rails...
Orodruin said:
The computer game Elite: Dangerous
Can you go from Earth to Alpgha Centauri? Should take about a day at the pace you describe.
 
  • #12
Vanadium 50 said:
Can you go from Earth to Alpgha Centauri? Should take about a day at the pace you describe.
No. Each star system is a separate instance. The game has two main forms of superluminal travel through made up physics: Hyperjumps and supercruise. Hyperjumps is essentially making small wormholes between gravity wells (i.e., to system "main" stars) and supercruise is essentially warp drive. Due to game limitations, if you just start travelling in supercruise towards the next system it will just not load. You will get to the correct position but the star won't be there, you need to make the hyperjump for the system to actually load.
 
  • #13
Vanadium 50 said:
Easier to toss a stink bomb and run. :wink:
Is it? I mean, it only took me like four words and three clicks. But then again, I am exceptionally talented.
 
  • Like
  • Haha
Likes phinds and Vanadium 50
  • #14
Orodruin said:
You will get to the correct position but the star won't be there
So you'd need to drive to the right spot, and then make a zero distance jump? Sounds complicated.
 
  • #15
Oh, and for fun. Proxima is actually visible in Alpha Centauri's sky (which is one more red dwarf than visible in Earth's sky). It would be about a 4th magnitude styar. (About because it's variable)
 
  • #16
Indeed. I think Proxima from Alpha is somewhere in Orion. But where could Alpha Centauri sky map with AB orbit be found? With epochs.
Especially relevant because of another instalment of Avatar...
 
  • #17
snorkack said:
Note some nasty errors here. No proper error bars for the Proxima-AB distance. And I doubt that the Sun-Proxima-AB angle is known to minutes, let alone seconds!
What do you mean? I can find both positions with a home telescope down to arcseconds. It seems to me to be a trivial problem to professional astronomers to come up with the Sun-Proxima-AB angle.
 
  • Like
Likes Vanadium 50
  • #18
Drakkith said:
What do you mean? I can find both positions with a home telescope down to arcseconds. It seems to me to be a trivial problem to professional astronomers to come up with the Sun-Proxima-AB angle.
No. What you can measure with a home telescope to arcseconds, and Hipparcos to milliarcseconds, is one angle of the triangle - the one at the Sun.
The two long sides of the triangle are both known only to the error of parallax - and Alpha is too bright for Gaia, so you´re stuck to Hipparcos data for that.
Which means that what you have is a small difference of a large distance, both with large relative errors to begin with. And these amplified errors make up the two remaining angles of triangle - the ones at Proxima and AB.
 
  • #19
Vanadium 50 said:
So you'd need to drive to the right spot, and then make a zero distance jump? Sounds complicated.
No, you just make the hyper jump - assuming your hyperdrive range is sufficient. Travelling in supercruise is what won’t change your instance. People have of course tried this with systems closer than Earth-Alpha Centauri.

If you are in a particular star sysem’s instance, the background sky will be generated based on the location of the center of the system - meaning that stars outside of the instance will not show any parallax regardless of how far you go in supercruise.
 
  • #20
snorkack said:
No. What you can measure with a home telescope to arcseconds, and Hipparcos to milliarcseconds, is one angle of the triangle - the one at the Sun.
The two long sides of the triangle are both known only to the error of parallax - and Alpha is too bright for Gaia, so you´re stuck to Hipparcos data for that.
Which means that what you have is a small difference of a large distance, both with large relative errors to begin with. And these amplified errors make up the two remaining angles of triangle - the ones at Proxima and AB.
Ah, I see now. I forgot that we need the distances as well as the angular positions to get the angles.
 
  • #23
University of Colorado's Fiske Planetarium has a scale model of the solar system. The sun is about the size of a grapefruit, terrestrial planets are tiny specks, and gas giants are the size of small marbles. The model takes up the entire campus.

On this scale, placing Alpha Centauri where the sun us places Proxima Centauri in Colorado Springs. If you want both star systems on the same "map" one is in Boulder and the other is in Panama.
 
Last edited:
  • Like
  • Informative
Likes diogenesNY and russ_watters
  • #24
Vanadium 50 said:
University of Colorado's Fiske Planetarium has a scale model of the solar system. The sun is about the size of a grapefruit, terrestrial planets are tiny specs, and gas giants are the size of small marbles. The model takes up the entire campus.
In Sweden there is a scale model of the solar system. Avicii arena (formerly Stockholm Globe Arena) is the Sun. The scale is 1:20000000. Venus is located outside my job and has the size of a big beach ball (62 cm diameter). Unfortunately, the Saturn model is not yet created so there is arguably something important missing.

Edit: Link: http://www.swedensolarsystem.se/en/
 
Last edited:
  • Like
Likes collinsmark and Tom.G
  • #25
Orodruin said:
1:20000000
On that scale, if Alpha Centauri A were in Stockholm, there is nowhere on Earth you could place Proxima Centauri.
 
  • #26
Vanadium 50 said:
On that scale, if Alpha Centauri A were in Stockholm, there is nowhere on Earth you could place Proxima Centauri.
With the Sun where it is in the model, Alpha Centauri A would be 5.4 times further away than the Moon.
 
  • #27
Vanadium 50 said:
On that scale, if Alpha Centauri A were in Stockholm, there is nowhere on Earth you could place Proxima Centauri.

Orodruin said:
With the Sun where it is in the model, Alpha Centauri A would be 5.4 times further away than the Moon.
So will my model made out of paper mache and balsa wood survive in space??
 
  • #28
Drakkith said:
So will my model made out of paper mache and balsa wood survive in space??
Is it 72 m in diameter. That would be the size of Alpha Centauri A at this scale?
 
  • #29
Orodruin said:
Is it 72 m in diameter. That would be the size of Alpha Centauri A at this scale?
Oof. A paper mache sphere 72 meters in diameter is very roughly 1.37x10^8 kg in mass, or 137,000 metric tons. This is probably larger than the sum of every payload ever brought into Earth orbit by mankind.
For comparison (much rounding and many assumptions were made to simplify the calculations):
ISS: 445 tons
Apollo 10-17: roughly 971 tons combined (8x S-IVb with LOI fuel + attached CSM and LM).
Space Shuttle: Very roughly 16,000 tons (135 launches x 120 tons of orbiter + payload that reached orbit).

A user over at stack exchange wrote a program to calculate the sum of all payloads ever launched (link to post), but the website they got their data from doesn't appear to track things like the S-IVb and the fuel it contained to get the CSM and LM to the Moon, so it severely underestimates the total mass ever brought to Earth orbit in my opinion.
Their estimate as of 15 Feb 2022: 14,933,443 kg, or about 15,000 tons. Without even counting commercial companies like Space X or non-U.S. launches I'm already over 17,000 tons.

Either way, we'd have to add over 100,000 tons to either number to get close to the paper mache ball.
 
  • #30
Drakkith said:
So will my model made out of paper mache and balsa wood survive in space??
"Survive", is a rather open-ended requirement. :rolleyes:
But it would have a chance if all the trapped air and other gasses have a way out.Oh, don't forget the G-force of the launch.

Ahh, enough negativism, GO FOR IT!

And please notify us of the launch date.
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
407
  • · Replies 66 ·
3
Replies
66
Views
5K
  • · Replies 31 ·
2
Replies
31
Views
9K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
4
Views
5K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 23 ·
Replies
23
Views
9K