MHB Where did I go wrong in simplifying this algebraic expression?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
AI Thread Summary
The discussion revolves around the simplification of the algebraic expression $\alpha_nr^n + \beta_nr^{-n}$, where initial formulations for $\alpha_n$ and $\beta_n$ were incorrectly derived. The user initially calculated $\alpha_n$ and $\beta_n$ but ended up with an expression that did not match the expected solution. By rearranging $\alpha_n$ and $\beta_n$ to have a common denominator, the user successfully simplified the expression to match the correct form. The final result confirms that the error lay in the initial handling of the denominators. The thread concludes with the user marking the issue as resolved.
Dustinsfl
Messages
2,217
Reaction score
5
$\alpha_nr^n + \beta_nr^{-n}$

We know that
\begin{alignat*}{3}
\alpha_na^n+\beta_na^{-n} & = & A_n\\
\alpha_nb^n+\beta_nb^{-n} & = & 0
\end{alignat*}
So I ended up with
$$
\alpha_n = \frac{-A_n}{b^{2n}/a^n-a^n}
$$
and
$$
\beta_n = \frac{A_n}{1/a^n-a^n/b^{2n}}
$$

When I plug them in, I obtain
$$
\left(\frac{a}{r}\right)^nA_n\frac{b^{2n}/a^n-r^{2n}}{b^{2n}-a^{2n}}
$$

However, the solution is supposed to be
$$
\left(\frac{a}{r}\right)^nA_n\frac{b^{2n}-r^{2n}}{b^{2n}-a^{2n}}
$$

I cannot find my error.
 
Mathematics news on Phys.org
dwsmith said:
$\alpha_nr^n + \beta_nr^{-n}$

We know that
\begin{alignat*}{3}
\alpha_na^n+\beta_na^{-n} & = & A_n\\
\alpha_nb^n+\beta_nb^{-n} & = & 0
\end{alignat*}
So I ended up with
$$
\alpha_n = \frac{-A_n}{b^{2n}/a^n-a^n}
$$
and
$$
\beta_n = \frac{A_n}{1/a^n-a^n/b^{2n}}
$$

When I plug them in, I obtain
$$
\left(\frac{a}{r}\right)^nA_n\frac{b^{2n}/a^n-r^{2n}}{b^{2n}-a^{2n}}
$$

However, the solution is supposed to be
$$
\left(\frac{a}{r}\right)^nA_n\frac{b^{2n}-r^{2n}}{b^{2n}-a^{2n}}
$$

I cannot find my error.

I think by rearranging the answers for \(\alpha_n\) and \(\beta_n\) to have a common denominator may help in the algebraic simplification.

\[\alpha_n=\frac{-A_{n}a^n}{b^{2n}-a^{2n}}\]

\[\beta_n=\frac{A_{n}a^nb^{2n}}{b^{2n}-a^{2n}}\]

\begin{eqnarray}

\therefore \alpha_nr^n + \beta_nr^{-n}&=&\left(\frac{-A_{n}a^n}{b^{2n}-a^{2n}}\right)r^n+\left(\frac{A_{n}a^nb^{2n}}{b^{2n}-a^{2n}}\right)r^{-n}\\

&=&\left(\frac{-A_{n}a^n}{b^{2n}-a^{2n}}\right)r^n+\left(\frac{A_{n}a^nb^{2n}}{b^{2n}-a^{2n}}\right)r^{-n}\\

&=&\frac{A_{n}a^nb^{2n}-A_{n}a^nr^{2n}}{r^n(b^{2n}-a^{2n})}\\

&=&\left(\frac{a}{r}\right)^nA_n\frac{b^{2n}-r^{2n}}{b^{2n}-a^{2n}}

\end{eqnarray}
 
Sudharaka said:
I think by rearranging the answers for \(\alpha_n\) and \(\beta_n\) to have a common denominator may help in the algebraic simplification.

\[\alpha_n=\frac{-A_{n}a^n}{b^{2n}-a^{2n}}\]

\[\beta_n=\frac{A_{n}a^nb^{2n}}{b^{2n}-a^{2n}}\]

\begin{eqnarray}

\therefore \alpha_nr^n + \beta_nr^{-n}&=&\left(\frac{-A_{n}a^n}{b^{2n}-a^{2n}}\right)r^n+\left(\frac{A_{n}a^nb^{2n}}{b^{2n}-a^{2n}}\right)r^{-n}\\

&=&\left(\frac{-A_{n}a^n}{b^{2n}-a^{2n}}\right)r^n+\left(\frac{A_{n}a^nb^{2n}}{b^{2n}-a^{2n}}\right)r^{-n}\\

&=&\frac{A_{n}a^nb^{2n}-A_{n}a^nr^{2n}}{r^n(b^{2n}-a^{2n})}\\

&=&\left(\frac{a}{r}\right)^nA_n\frac{b^{2n}-r^{2n}}{b^{2n}-a^{2n}}

\end{eqnarray}

I marked the thread solved a little bit ago.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
3
Views
3K
Replies
1
Views
1K
Replies
8
Views
2K
Replies
11
Views
3K
Replies
9
Views
2K
Replies
21
Views
3K
Back
Top