Where Did I Go Wrong When Simplifying This Exponent Equation?

  • Context: MHB 
  • Thread starter Thread starter PistolSlap
  • Start date Start date
  • Tags Tags
    Exponents Simplifying
Click For Summary

Discussion Overview

The discussion revolves around the simplification of the exponent equation \[\left[(-4a^{-4}b^{-5})^{-3}\right]^4\]. Participants analyze the steps taken to simplify the expression, focusing on the application of exponents and the handling of negative signs. The scope includes mathematical reasoning and technical explanations related to exponent rules.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant claims to have simplified the expression incorrectly, resulting in a positive denominator instead of a negative one.
  • Another participant suggests that the exponent of -3 was incorrectly applied to the constant -4, proposing a corrected approach to the simplification.
  • A third participant elaborates on the handling of negative signs, breaking down the expression into its components and demonstrating the correct application of exponents to each part.
  • This participant also notes that the reasoning regarding the negative sign's application was flawed, providing examples to illustrate the difference between applying exponents to negative numbers in and out of brackets.
  • A later reply expresses understanding of the corrections made and acknowledges the clarification provided by the previous participant.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the initial simplification steps, as there are differing interpretations of how the negative sign and exponents should be handled. Multiple competing views remain regarding the correct application of exponent rules.

Contextual Notes

There are limitations in the discussion regarding the assumptions made about the application of exponents to negative numbers and the implications of those assumptions on the final result. Unresolved mathematical steps are present in the initial simplification process.

PistolSlap
Messages
2
Reaction score
0
I have this problem to simplify with positive exponents:

\[\left[(-4a^{-4}b^{-5})^{-3}\right]^4\]

So, working with the interior brackets, I applied -3 to the equation, which resulted in:

\[-(-64)x^{12}b^{15}\]

**because "-4" was not in brackets, the exponent was applied to the 4 only, independent of the negative sign, which resulted in -(-64), so:

\[\left[ 64x^{12}b^{15}\right]^4\]

which resulted in this insane answer:

\[16777216x^{48}b^{60}\]

However, when I checked it, an online calculator said the answer was:

\[\frac{a^{48}b^{60}}{16777216}\]

which means that when applying exponents to the number I did something wrong, as it should have ended up negative, which would have resulted in it becoming a positive denominator.

What did I do wrong to end up with the wrong sign on that number?
 
Last edited by a moderator:
Mathematics news on Phys.org
Re: Simplifying Question -- Please Help?

In your first step, you incorrectly applied the exponent of -3 to the constant -4, you applied a positive 3 instead. Your first step should look like:

$\displaystyle \left[\left(-4a^{-4}b^{-5} \right)^{-3} \right]^4=\left[(-4)^{1(-3)}a^{-4(-3)}b^{-5(-3)} \right]^4=\left[(-4)^{-3}a^{12}b^{15} \right]^4=\left[-\frac{a^{12}b^{15}}{4^3} \right]^4$

Now, you can see why the result is as given by the online calculator you used.
 
the various negative signs make this kind of complicated.

the first thing i would do is recognize that:

$-4a^{-4}b^{-5} = (-1)(4)(a^{-4}b^{-5})$

so:

$(-4a^{-4}b^{-5})^{-3} = (-1)^{-3}(4)^{-3}(a^{-4})^{-3}(b^{-5})^{-3}$

and:

$(-1)^{-3} = \dfrac{1}{(-1)^3} = \dfrac{1}{-1} = -1$, so

$(-1)^{-3}(4)^{-3}(a^{-4})^{-3}(b^{-5})^{-3} = -[(4)^{-3}(a^{-4})^{-3}(b^{-5})^{-3}]$

now, "inside the brackets" the first term is:

$4^{-3} = \dfrac{1}{4^3}$, so we have:

$(-4a^{-3}b^{-5})^{-3} = -\left(\dfrac{a^{(-4)(-3)}b^{(-5)(-3)}}{4^3}\right) = -\left(\dfrac{a^{12}b^{15}}{4^3}\right)$

taking the 4th power of this, the negative sign goes away, and we get:

$[(-4a^{-3}b^{-5})^{-3}]^4 = \left[-\left(\dfrac{a^{12}b^{15}}{4^3}\right)\right]^4 = \left(\dfrac{a^{12}b^{15}}{4^3}\right)^4$

$ = \dfrac{a^{48}b^{60}}{4^{12}}$

as a side note, your reasoning that since (-4) was "not in brackets" the exponent did not apply to the negative sign but only to the 4 is wrong...you just got lucky, because -3 is ODD.

for example:

$(-2a)^2 = 4a^2$ but $-(2a)^2 = -4a^2$

since the first is $(-2a)(-2a)$ while the second is $-(2a)(2a)$.
 
Re: Simplifying Question -- Please Help?

Awesome, thanks, I understand now! :D

MarkFL said:
In your first step, you incorrectly applied the exponent of -3 to the constant -4, you applied a positive 3 instead. Your first step should look like:

$\displaystyle \left[\left(-4a^{-4}b^{-5} \right)^{-3} \right]^4=\left[(-4)^{1(-3)}a^{-4(-3)}b^{-5(-3)} \right]^4=\left[(-4)^{-3}a^{12}b^{15} \right]^4=\left[-\frac{a^{12}b^{15}}{4^3} \right]^4$

Now, you can see why the result is as given by the online calculator you used.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
3
Views
2K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K