Where Do the Diagonals of a Parallelogram Intersect?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Intersection Point
Click For Summary

Discussion Overview

The discussion revolves around determining the intersection point of the diagonals in a parallelogram defined by its vertices, specifically focusing on the coordinates of point D in relation to points A, B, and C. The scope includes mathematical reasoning and vector operations related to geometry.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Conceptual clarification

Main Points Raised

  • Participants explore the relationship between the diagonals of a parallelogram and the coordinates of its vertices, particularly focusing on the intersection point M.
  • Some participants propose that the vector relationship $\vec{AD}=2\vec{AM}$ holds due to the properties of triangles formed by the diagonals.
  • There is a discussion on the correct coordinates for point D, with some suggesting $D=(x + 1, y)$ while others consider $D=(x - 1, y)$ based on the placement of point C.
  • Clarifications are made regarding the order of vertices in naming the parallelogram, indicating that it affects the coordinates of point D.
  • Participants calculate the coordinates of M based on different assumptions about the placement of points, leading to different expressions for M.

Areas of Agreement / Disagreement

Participants generally agree on the vector relationships and properties of the diagonals in a parallelogram, but there is disagreement regarding the specific coordinates of point D and the implications of vertex order. The discussion remains unresolved on these points.

Contextual Notes

There are limitations regarding the assumptions made about the placement of points and the definitions of the vertices, which influence the calculations of coordinates for M and D.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Suppose that a parallelogram $ABCD$ has vertices $A=(0,0)$ and $B=(1,0)$. In terms of $C=(x,y)$, find the position of $D$ and where the two diagonals will intersect.

Then we will have something like that:

View attachment 5378How can we find the coordinates of $M$, i.e. the point at which the two diagonals intersect?
 

Attachments

  • that.png
    that.png
    2 KB · Views: 131
Mathematics news on Phys.org
Note that $\overrightarrow{AC}+\overrightarrow{AB}=\overrightarrow{AD}=2\overrightarrow{AM}$. You should use the connection between the coordinates of points and the coordinates of vectors, as well as rules for operations on vectors in terms of coordinates.
 
Does it hold that $\vec{AD}=2\vec{AM}$ from the fact that each diagonal of a parallelogram separates it into two equal triangles?I found that $D=(x \pm 1, y)$.

Let $M=(\mu_1, \mu_2)$.

So we have $\vec{AD}=(x \pm 1, y)$ and $\vec{AM}=(\mu_1, \mu_2)$.

So $\vec{AD}=2\vec{AM} \Rightarrow x \pm 1= 2 \mu_1 \text{ and } y=2 \mu_2 \Rightarrow \mu_1=\frac{x \pm 1}{2} \text{ and } \mu_2=\frac{y}{2}$

Thus $M=\left( \frac{x \pm 1}{2}, \frac{y}{2} \right)$. Right?
 
evinda said:
Does it hold that $\vec{AD}=2\vec{AM}$ from the fact that each diagonal of a parallelogram separates it into two equal triangles?
Yes, but it's easier to refer to the known fact that diagonals in a parallelogram are divided in half by the intersection point.

evinda said:
I found that $D=(x \pm 1, y)$.
It should be $D=(x + 1, y)$ because the $x$-coordinate of $B$ is $1$, not $-1$. The rest is correct.
 
Evgeny.Makarov said:
Yes, but it's easier to refer to the known fact that diagonals in a parallelogram are divided in half by the intersection point.
Is this known as a theorem?

Evgeny.Makarov said:
It should be $D=(x + 1, y)$ because the $x$-coordinate of $B$ is $1$, not $-1$. The rest is correct.

Couldn't we have D=(x-1,y) if we put D at the position I put C at the graph that I have drawn and C at the position of D?
Or am I wrong?
 
evinda said:
Is this known as a theorem?
Yes.

evinda said:
Couldn't we have D=(x-1,y) if we put D at the position I put C at the graph that I have drawn and C at the position of D?
You are right, it depends on the order of vertices. In fact, calling a quadrangle (and, more generally, a polygon) $XYZW$ usually means that the order of vertices is $X,Y,Z,W$ if they are visited in the counterclockwise or clockwise order. Using this rule, the parallelogram in post #1 should be called $ABDC$.
 
Evgeny.Makarov said:
Yes.

Ah, I see... (Nod)

Evgeny.Makarov said:
You are right, it depends on the order of vertices. In fact, calling a quadrangle (and, more generally, a polygon) $XYZW$ usually means that the order of vertices is $X,Y,Z,W$ if they are visited in the counterclockwise or clockwise order. Using this rule, the parallelogram in post #1 should be called $ABDC$.

So $X$ has to be connected with $Y$, $Y$ with $Z$, $Z$ with $W$ and $W$ with $X$, right?

I considered the parallelogram ABCD and then I got that $\vec{AC}=2 \vec{AM} \Rightarrow (x,y)=(2 \mu_1, 2 \mu_2)
\Rightarrow \mu_1=\frac{x}{2}$ and $\mu_2=\frac{y}{2}$.

So $M=\left( \frac{x}{2}, \frac{y}{2} \right)$, right?
 
evinda said:
So $X$ has to be connected with $Y$, $Y$ with $Z$, $Z$ with $W$ and $W$ with $X$, right?
That's how it is usually done.

evinda said:
I considered the parallelogram ABCD and then I got that $\vec{AC}=2 \vec{AM} \Rightarrow (x,y)=(2 \mu_1, 2 \mu_2)
\Rightarrow \mu_1=\frac{x}{2}$ and $\mu_2=\frac{y}{2}$.

So $M=\left( \frac{x}{2}, \frac{y}{2} \right)$, right?
Correct.
 
Great... Thanks a lot! (Smirk)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K