Where does the Fourier series converge?

Click For Summary
SUMMARY

The discussion centers on the convergence of the Fourier series for the piecewise function defined on the interval [-π, π]. The Fourier series is derived as g(x) ∼ ∑(1/k)sin(kx) for k=1, 2, 3, ..., indicating that the coefficients a_k are zero while b_k equals 1/k. The convergence of the Fourier series is confirmed using the theorem for piecewise C^1 functions, which states that the series converges to the average of the left and right limits at points of discontinuity. The function converges to g(x) for all x in the specified intervals.

PREREQUISITES
  • Understanding of Fourier series and their coefficients
  • Knowledge of piecewise continuous functions
  • Familiarity with integration techniques in calculus
  • Basic concepts of convergence in mathematical analysis
NEXT STEPS
  • Study the properties of Fourier series convergence for piecewise continuous functions
  • Learn about the Dirichlet conditions for Fourier series
  • Explore the implications of the Fourier series on signal processing
  • Investigate the application of Fourier series in solving partial differential equations
USEFUL FOR

Mathematicians, engineers, and students studying Fourier analysis, signal processing, or any field that requires understanding of periodic functions and their representations.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to find the Fourier series of the following function :

$$g: [-\pi, \pi]\rightarrow \mathbb{R} \\ g(x)=\left\{\begin{matrix}
-\frac{\pi+x}{2} & , -\pi \leq x \leq 0\\
\frac{\pi-x}{2} & , 0<x\leq \pi
\end{matrix}\right.$$

I have done the following:

$$g \sim \frac{a_0}{2}+\sum_{k=1}^{\infty}(a_k \cos (kx)+b_k \sin (kx))$$

$$a_k=\frac{1}{\pi}\int_{\pi}^{\pi} g(x) \cos (kx)dx=\frac{1}{\pi}\int_{-\pi}^0-\frac{\pi+x}{2}\cos (kx)dx+\frac{1}{\pi}\int_0^{\pi}\frac{\pi-x}{2}\cos (kx)dx=\dots=0, k=0, 1, 2, 3, 4, 5, \dots $$

$$b_k=\frac{1}{\pi}\int_{-\pi}^{\pi}g(x)\sin (kx)dx=\frac{1}{\pi}\int_{-\pi}^0-\frac{\pi+x}{2}\sin (kx)dx+\frac{1}{\pi}\int_0^{\pi}\frac{\pi-x}{2}\sin (kx)dx =\dots=\frac{1}{k}, k=1, 2, 3, 4, 5, \dots $$

So, $$g \sim \sum_{k=1}^{\infty}\frac{1}{k}\sin (kx)$$

Is this correct??

How can I find the function at which the Fourier series of $g$ converges?? Do we have to use the following theorem:

Let $f: [0, 2 \pi] \rightarrow \mathbb{R}$ piecewise $C^1[0, 2\pi]$, and $$f \sim \frac{a_0}{2}+\sum_{k=1}^{\infty}(a_k \cos (kx)+b_k \sin (kx))$$

Then $$\frac{a_0}{2}+\sum_{k=1}^{\infty}(a_k\cos (kx)+b_k \sin (kx))=\left\{\begin{matrix}
\frac{f(x^+)+f(x^-)}{2} & , \forall x \in (0,2\pi)\\
\frac{f(0^+)+f(2\pi^-)}{2} & , \forall x \in \{0, 2\pi\}
\end{matrix}\right.$$

?? (Wondering) Is it then as followed??

$$\sum_{k=1}^{\infty}\frac{1}{k}\sin (kx)=\left\{\begin{matrix}
\frac{g(x^+)+g(x^-)}{2}=g(x) & , \forall x \in (-\pi, 0)\\
\frac{g(x^+)+g(x^-)}{2}=g(x) & , \forall x \in (0, \pi)\\
\frac{g(0^+)+g(0^-)}{2}=\frac{\frac{\pi}{2}-\frac{\pi}{2}}{2}=0 & , x=0
\end{matrix}\right.$$
 
Physics news on Phys.org
mathmari said:
$$g \sim \sum_{k=1}^{\infty}\frac{1}{k}\sin (kx)$$ $$\sum_{k=1}^{\infty}\frac{1}{k}\sin (kx)=\left\{\begin{matrix}
\frac{g(x^+)+g(x^-)}{2}=g(x) & , \forall x \in (-\pi, 0)\\
\frac{g(x^+)+g(x^-)}{2}=g(x) & , \forall x \in (0, \pi)\\
\frac{g(0^+)+g(0^-)}{2}=\frac{\frac{\pi}{2}-\frac{\pi}{2}}{2}=0 & , x=0
\end{matrix}\right.$$
Correct both times. (Star) (Star)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
28
Views
6K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K