MHB Where does the Fourier series converge?

Click For Summary
The discussion focuses on finding the Fourier series for the piecewise function g defined on the interval [-π, π]. The user calculates the Fourier coefficients, determining that a_k equals zero for all k, while b_k equals 1/k for k greater than or equal to 1. This leads to the conclusion that the Fourier series for g is represented as the sum of (1/k)sin(kx). The user seeks clarification on whether the convergence of the Fourier series aligns with the theorem regarding piecewise continuous functions, specifically at points of discontinuity. The conclusion drawn is that the series converges to the average of the left and right limits of g at discontinuities, confirming the correctness of the approach.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to find the Fourier series of the following function :

$$g: [-\pi, \pi]\rightarrow \mathbb{R} \\ g(x)=\left\{\begin{matrix}
-\frac{\pi+x}{2} & , -\pi \leq x \leq 0\\
\frac{\pi-x}{2} & , 0<x\leq \pi
\end{matrix}\right.$$

I have done the following:

$$g \sim \frac{a_0}{2}+\sum_{k=1}^{\infty}(a_k \cos (kx)+b_k \sin (kx))$$

$$a_k=\frac{1}{\pi}\int_{\pi}^{\pi} g(x) \cos (kx)dx=\frac{1}{\pi}\int_{-\pi}^0-\frac{\pi+x}{2}\cos (kx)dx+\frac{1}{\pi}\int_0^{\pi}\frac{\pi-x}{2}\cos (kx)dx=\dots=0, k=0, 1, 2, 3, 4, 5, \dots $$

$$b_k=\frac{1}{\pi}\int_{-\pi}^{\pi}g(x)\sin (kx)dx=\frac{1}{\pi}\int_{-\pi}^0-\frac{\pi+x}{2}\sin (kx)dx+\frac{1}{\pi}\int_0^{\pi}\frac{\pi-x}{2}\sin (kx)dx =\dots=\frac{1}{k}, k=1, 2, 3, 4, 5, \dots $$

So, $$g \sim \sum_{k=1}^{\infty}\frac{1}{k}\sin (kx)$$

Is this correct??

How can I find the function at which the Fourier series of $g$ converges?? Do we have to use the following theorem:

Let $f: [0, 2 \pi] \rightarrow \mathbb{R}$ piecewise $C^1[0, 2\pi]$, and $$f \sim \frac{a_0}{2}+\sum_{k=1}^{\infty}(a_k \cos (kx)+b_k \sin (kx))$$

Then $$\frac{a_0}{2}+\sum_{k=1}^{\infty}(a_k\cos (kx)+b_k \sin (kx))=\left\{\begin{matrix}
\frac{f(x^+)+f(x^-)}{2} & , \forall x \in (0,2\pi)\\
\frac{f(0^+)+f(2\pi^-)}{2} & , \forall x \in \{0, 2\pi\}
\end{matrix}\right.$$

?? (Wondering) Is it then as followed??

$$\sum_{k=1}^{\infty}\frac{1}{k}\sin (kx)=\left\{\begin{matrix}
\frac{g(x^+)+g(x^-)}{2}=g(x) & , \forall x \in (-\pi, 0)\\
\frac{g(x^+)+g(x^-)}{2}=g(x) & , \forall x \in (0, \pi)\\
\frac{g(0^+)+g(0^-)}{2}=\frac{\frac{\pi}{2}-\frac{\pi}{2}}{2}=0 & , x=0
\end{matrix}\right.$$
 
Physics news on Phys.org
mathmari said:
$$g \sim \sum_{k=1}^{\infty}\frac{1}{k}\sin (kx)$$ $$\sum_{k=1}^{\infty}\frac{1}{k}\sin (kx)=\left\{\begin{matrix}
\frac{g(x^+)+g(x^-)}{2}=g(x) & , \forall x \in (-\pi, 0)\\
\frac{g(x^+)+g(x^-)}{2}=g(x) & , \forall x \in (0, \pi)\\
\frac{g(0^+)+g(0^-)}{2}=\frac{\frac{\pi}{2}-\frac{\pi}{2}}{2}=0 & , x=0
\end{matrix}\right.$$
Correct both times. (Star) (Star)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
28
Views
6K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K