MHB Where Is the Error in Solving the Heat Equation in Infinite Space?

Click For Summary
The discussion revolves around solving the heat equation in infinite space with initial conditions defined by the Heaviside function. The user employs separation of variables and Fourier transforms, leading to an expression for the solution involving an integral that diverges when k=0. The main error identified is the assumption that the integral converges for all k, particularly at k=0, which necessitates a different approach. The user also seeks clarification on the limits for integrating the derived expression for u_x to find u(x,t). The conversation highlights the importance of careful treatment of special cases in integral solutions.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I have to solve the following problem:
$$u_t=u_{xx}, x \in \mathbb{R}, t>0$$
$$u(x,0)=f(x)=H(x)=\left\{\begin{matrix}
1, x>0\\
0, x<0
\end{matrix}\right.$$

I have done the following:

We use the method separation of variables, $u(x,t)=X(x)T(t)$.

I have found that the eigenfunctions are $X_k(x)=e^{ikx}, \lambda=k^2, k \in \mathbb{R}$

$T_k(t)=e^{-k^2t}$

$$u(x,t)=\frac{1}{2\pi} \int_{-\infty}^{+\infty}{\widetilde{f}(k) e^{ikx} e^{-k^2t}}dk$$

$$u(x,0)=H(x) \Rightarrow H(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{ikx}}dk$$

$$\widetilde{f}(k)=\int_0^{\infty}{e^{-ikx}}dx=\frac{1}{ik}$$

$$u(x,t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\frac{1}{ik} e^{ikx} e^{-k^2t}}dk$$

To find the last integral,I thought the following:

$$u_x= \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}}$$

$$u(x,t)=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}} dx=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty}{ e^{-\frac{x^2}{4t}}}=1$$
since:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{4t}}e^{-\frac{y^2}{4t}}dxdy= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2+y^2}{4t}}=\int_{0}^{+\infty} \int_{0}^{2 \pi} e^{\frac{-r^2}{4t}}r d \theta dr=\int_{0}^{+\infty} 2 \pi e^{\frac{-r^2}{4t}}r dr=- \pi [4t e^{\frac{-r^2}{4t}}]_0^{+\infty}=4t \pi \Rightarrow \int_{\infty}^{+\infty} e^{\frac{-x^2}{4t}}=\sqrt{4t \pi}$$

But the solution $u(x,t)=1$ does not satisfy the conditions. Where is my mistake? (Wondering)
 
Physics news on Phys.org
Hi! :D

mathmari said:
$$\widetilde{f}(k)=\int_0^{\infty}{e^{-ikx}}dx=\frac{1}{ik}$$

This integral is only convergent if $k>0$.
If for instance $k=0$ you'll need to find a different approach.
$$u(x,t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\frac{1}{ik} e^{ikx} e^{-k^2t}}dk$$

To find the last integral,I thought the following:

$$u_x= \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}}$$

Where did you get that formula? (Confused)
$$u(x,t)=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}} dx=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty}{ e^{-\frac{x^2}{4t}}}=1$$
since:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{4t}}e^{-\frac{y^2}{4t}}dxdy= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2+y^2}{4t}}=\int_{0}^{+\infty} \int_{0}^{2 \pi} e^{\frac{-r^2}{4t}}r d \theta dr=\int_{0}^{+\infty} 2 \pi e^{\frac{-r^2}{4t}}r dr=- \pi [4t e^{\frac{-r^2}{4t}}]_0^{+\infty}=4t \pi \Rightarrow \int_{\infty}^{+\infty} e^{\frac{-x^2}{4t}}=\sqrt{4t \pi}$$

But the solution $u(x,t)=1$ does not satisfy the conditions. Where is my mistake? (Wondering)

The solution $u(x,t)=1$ follows from $k=0$, which is a special case.
Take another look at your derivation to see what happens if $k=0$.
 
I like Serena said:
Hi! :D
This integral is only convergent if $k>0$.
If for instance $k=0$ you'll need to find a different approach.

Where did you get that formula? (Confused)

The solution $u(x,t)=1$ follows from $k=0$, which is a special case.
Take another look at your derivation to see what happens if $k=0$.

I found that the solution of the problem has the following form:
$$u(x,t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\frac{1}{ik} e^{ikx}e^{-k^2t}}dk$$

Then, I derivated this in respect to $x$:
$$u_x=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\frac{1}{ik} e^{ikx}e^{-k^2t}}dk$$

Then, from the formula:
$$\int_{-\infty}^{+\infty}{e^{ikb}e^{-k^2a}}dk=\sqrt{\frac{\pi}{a}}e^{-\frac{b^2}{4a}}$$

we get the following:
$$u_x=\frac{1}{2 \pi} \sqrt{\frac{\pi}{t}}e^{-\frac{x^2}{4t}}=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}}$$

So to find $u(x,t)$, I have to calculate the integral $\displaystyle{\int u_x dx}$ but with what limits?? (Wondering)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
412