Where Is the Error in Solving the Heat Equation in Infinite Space?

Click For Summary
SUMMARY

The discussion centers on solving the heat equation in infinite space, specifically the equation $$u_t=u_{xx}, x \in \mathbb{R}, t>0$$ with initial condition $$u(x,0)=H(x)$$, where $$H(x)$$ is the Heaviside step function. The method of separation of variables is employed, leading to the eigenfunctions $$X_k(x)=e^{ikx}$$ and temporal solutions $$T_k(t)=e^{-k^2t}$$. A critical error identified is the treatment of the integral involving $$k=0$$, which requires a different approach due to convergence issues.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with the method of separation of variables
  • Knowledge of Fourier transforms and eigenfunctions
  • Concept of the Heaviside step function
NEXT STEPS
  • Study the implications of the Fourier transform on the heat equation
  • Learn about convergence criteria for integrals involving complex variables
  • Explore alternative methods for solving PDEs, such as the method of characteristics
  • Investigate the behavior of solutions to the heat equation under various initial conditions
USEFUL FOR

Mathematicians, physicists, and engineers working with heat transfer problems, particularly those interested in the analytical solutions of partial differential equations.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I have to solve the following problem:
$$u_t=u_{xx}, x \in \mathbb{R}, t>0$$
$$u(x,0)=f(x)=H(x)=\left\{\begin{matrix}
1, x>0\\
0, x<0
\end{matrix}\right.$$

I have done the following:

We use the method separation of variables, $u(x,t)=X(x)T(t)$.

I have found that the eigenfunctions are $X_k(x)=e^{ikx}, \lambda=k^2, k \in \mathbb{R}$

$T_k(t)=e^{-k^2t}$

$$u(x,t)=\frac{1}{2\pi} \int_{-\infty}^{+\infty}{\widetilde{f}(k) e^{ikx} e^{-k^2t}}dk$$

$$u(x,0)=H(x) \Rightarrow H(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{ikx}}dk$$

$$\widetilde{f}(k)=\int_0^{\infty}{e^{-ikx}}dx=\frac{1}{ik}$$

$$u(x,t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\frac{1}{ik} e^{ikx} e^{-k^2t}}dk$$

To find the last integral,I thought the following:

$$u_x= \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}}$$

$$u(x,t)=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}} dx=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty}{ e^{-\frac{x^2}{4t}}}=1$$
since:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{4t}}e^{-\frac{y^2}{4t}}dxdy= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2+y^2}{4t}}=\int_{0}^{+\infty} \int_{0}^{2 \pi} e^{\frac{-r^2}{4t}}r d \theta dr=\int_{0}^{+\infty} 2 \pi e^{\frac{-r^2}{4t}}r dr=- \pi [4t e^{\frac{-r^2}{4t}}]_0^{+\infty}=4t \pi \Rightarrow \int_{\infty}^{+\infty} e^{\frac{-x^2}{4t}}=\sqrt{4t \pi}$$

But the solution $u(x,t)=1$ does not satisfy the conditions. Where is my mistake? (Wondering)
 
Physics news on Phys.org
Hi! :D

mathmari said:
$$\widetilde{f}(k)=\int_0^{\infty}{e^{-ikx}}dx=\frac{1}{ik}$$

This integral is only convergent if $k>0$.
If for instance $k=0$ you'll need to find a different approach.
$$u(x,t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\frac{1}{ik} e^{ikx} e^{-k^2t}}dk$$

To find the last integral,I thought the following:

$$u_x= \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}}$$

Where did you get that formula? (Confused)
$$u(x,t)=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}} dx=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty}{ e^{-\frac{x^2}{4t}}}=1$$
since:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{4t}}e^{-\frac{y^2}{4t}}dxdy= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2+y^2}{4t}}=\int_{0}^{+\infty} \int_{0}^{2 \pi} e^{\frac{-r^2}{4t}}r d \theta dr=\int_{0}^{+\infty} 2 \pi e^{\frac{-r^2}{4t}}r dr=- \pi [4t e^{\frac{-r^2}{4t}}]_0^{+\infty}=4t \pi \Rightarrow \int_{\infty}^{+\infty} e^{\frac{-x^2}{4t}}=\sqrt{4t \pi}$$

But the solution $u(x,t)=1$ does not satisfy the conditions. Where is my mistake? (Wondering)

The solution $u(x,t)=1$ follows from $k=0$, which is a special case.
Take another look at your derivation to see what happens if $k=0$.
 
I like Serena said:
Hi! :D
This integral is only convergent if $k>0$.
If for instance $k=0$ you'll need to find a different approach.

Where did you get that formula? (Confused)

The solution $u(x,t)=1$ follows from $k=0$, which is a special case.
Take another look at your derivation to see what happens if $k=0$.

I found that the solution of the problem has the following form:
$$u(x,t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\frac{1}{ik} e^{ikx}e^{-k^2t}}dk$$

Then, I derivated this in respect to $x$:
$$u_x=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\frac{1}{ik} e^{ikx}e^{-k^2t}}dk$$

Then, from the formula:
$$\int_{-\infty}^{+\infty}{e^{ikb}e^{-k^2a}}dk=\sqrt{\frac{\pi}{a}}e^{-\frac{b^2}{4a}}$$

we get the following:
$$u_x=\frac{1}{2 \pi} \sqrt{\frac{\pi}{t}}e^{-\frac{x^2}{4t}}=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}}$$

So to find $u(x,t)$, I have to calculate the integral $\displaystyle{\int u_x dx}$ but with what limits?? (Wondering)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
610