MHB Where is the Mistake? Solving a System of Equations

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Mistake
Yankel
Messages
390
Reaction score
0
Hello

I have a system of equations with the question "for which values of a the system has: a single solution, no solution and infinite number of solutions". In addition, I have some solution, and I need to find the mistake in the solution, I need some help with it...

So, for which values of a, the next system:

2x+y=1
4x+ay+z=0
3y+az=2

has a single solution, no solution and infinite number of solutions ?

View attachment 434

if a=2, the matrix has proportional rows (r2 and r3), and we get infinite number of solutions. However, if we set a=2 in the original system, there is a single solution.

Where is the mistake ?

Thanks !
 

Attachments

  • system.JPG
    system.JPG
    13.6 KB · Views: 84
Physics news on Phys.org
You have it there in your graphic.

a = -1

This results in the third row disappearing, making an underfined system and infinitely many solutions.

a = 3

This results in an inappropriate result indicating no solution.

a = Anything Else

Unique Solution.
 
yes, but put a=2, you get

2 1 0 1
0 0 1 -2
0 0 -3 6

now multiply the 3rd row by (1/3) and add the 2nd row to it, you get:

2 1 0 1
0 0 1 -2
0 0 0 0

which is not a single solution...something is wrong here...
 
Yankel said:
yes, but put a=2, you get

2 1 0 1
0 0 1 -2
0 0 -3 6

now multiply the 3rd row by (1/3) and add the 2nd row to it, you get:

2 1 0 1
0 0 1 -2
0 0 0 0

which is not a single solution...something is wrong here...
The operation $R_3 \to (a-2)R_3 -3R_2$ is the culprit. When $a=2$, that has the effect of killing the third row and replacing it by a multiple of the second row. So it is hardly surprising that rows 2 and 3 are then proportional. This is not so in the original system, it is something that you have introduced by performing a dodgy operation.

In fact, operations of the form $R_i\to pR_i+qR_j$ are best avoided unless $p=1.$ What you should have done instead of $R_3 \to (a-2)R_3 -3R_2$ is $R_2\to \frac1{a-2}R_2.$ When $a=2$ that gives a division by zero, which should have sounded an alarm bell and warned you to treat that case separately.
 
Understood, thank you !
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
15
Views
2K
Replies
6
Views
2K
Replies
9
Views
5K
Replies
4
Views
3K
Replies
3
Views
1K
Replies
2
Views
1K
Back
Top