Which block reaches the wall faster?

Click For Summary
SUMMARY

The discussion centers on the dynamics of two blocks, A and B, connected by a string over a pulley. Block A accelerates in the x-direction with an acceleration of a_A^x = T_1/m, while block B has both x and y components of acceleration, with a_B^x = -T_2\sin(\theta)/m and a_B^y = (T_2\cos(\theta)/m) - g. The conclusion drawn is that block A reaches the wall faster than block B due to its greater acceleration in the x-direction, as |a_A^x| > |a_B^x|. The reasoning is supported by the fact that both blocks start at rest and have the same distance to the wall.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with free body diagrams
  • Knowledge of trigonometric functions, specifically sine and cosine
  • Basic principles of acceleration and tension in a pulley system
NEXT STEPS
  • Study the effects of different angles on block acceleration in pulley systems
  • Learn about the implications of tension in multi-block systems
  • Explore the concept of center of mass in dynamic systems
  • Investigate the role of friction in block motion and acceleration
USEFUL FOR

Physics students, mechanical engineers, and anyone interested in understanding dynamics in pulley systems and block motion analysis.

MathVoider
Messages
2
Reaction score
0
Homework Statement
Two block, A and B, of identical mass are connected together by a massless string which is always under tension. They each are of a distance L from the pulley. The pulley has negligable size compared to the blocks. All kinds of friction can be ignored. Initially the block B is suspended by a string. The question is, when the aforementioned string is cut, which block reaches the wall/pulley before the other? In other terms which block travels the distance "L" the fastest.

Scroll down for the diagram:
Relevant Equations
x
normale.PNG

My Solution​

after the string is cut we have a system well defined by the following free body diagram:

problema.PNG


I argue that the acceleration of the block A in the x direction (##a_A^x##) is:
$$ F_A = T_1 $$
$$ ma_A^x = T_1 $$
$$ a_A^x = \frac{T_1}{m} $$
I argue that the acceleration of the block B in the y direction (##a_B^y##) is:
$$ F_B^y = T_2\cos(\theta)-F_g $$
$$ ma_B^y = T_2\cos(\theta)-mg $$
$$ a_B^y = \frac{T_2\cos(\theta)}{m} -g $$
I argue that the acceleration of the block B in the x direction (##a_B^x##) is:
$$ F_B^x = -T_2\sin(\theta) $$
$$ ma_B^x = -T_2\sin(\theta) $$
$$ a_B^x = -\frac{T_2\sin(\theta)}{m} $$

Now that we've got the equation making out of the way i can explain my resoning:
I state that ##T_1## and ##T_2## are egual because when the block B moves along the direction of the string then the block A has to move by the same distance. As such we get:
$$ a_A^x = \frac{T_1}{m}$$ $$a_B^x = -\frac{T_1\sin(\theta)}{m} $$
if we take the absolute value we get:
$$ a_A^x = \frac{T_1}{m}$$ $$a_B^x = \frac{T_1\sin(\theta)}{m} $$
now I argue that ##a_A^x>a_B^x## because ##\sin(\theta)## goes from 0 to 1, since block A and B have the same distance from the pulley\wall, and they both start at rest, and block A has a greater accelleration then block B then block A will reach the pulley\wall faster.

Question​

I want to know if my reasoning is correct or if I have forgotten/misused something.
 
Physics news on Phys.org
MathVoider said:
$$ a_A^x = \frac{T_1}{m}$$ $$a_B^x = -\frac{T_1\sin(\theta)}{m} $$
if we take the absolute value we get:
$$ a_A^x = \frac{T_1}{m}$$ $$a_B^x = \frac{T_1\sin(\theta)}{m} $$
now I argue that ##a_A^x>a_B^x## because ##\sin(\theta)## goes from 0 to 1, since block A and B have the same distance from the pulley\wall, and they both start at rest, and block A has a greater accelleration then block B then block A will reach the pulley\wall faster.
I do not see anything missed, although it seems like more work than is required.

I would have liked to see the point more clearly and directly made that $$|a_A^x| = \frac{T_1}{m} > \frac{T_1 \sin \theta}{m} = |a_B^x|$$
Personally, I would have taken a different approach. Reason first that the horizontal position of the center of mass will accelerate in the direction of the horizontal net force from the pulley. That being a rightward (or briefly zero) net external horizontal force, the center of mass must be to the right of the wall when one of the two blocks first reaches the wall. Clearly, this can only happen if block A reaches the wall first.
 
jbriggs444 said:
I do not see anything missed, although it seems like more work than is required.

I would have liked to see the point more clearly and directly made that $$|a_A^x| = \frac{T_1}{m} > \frac{T_1 \sin \theta}{m} = |a_B^x|$$
Personally, I would have taken a different approach. Reason first that the horizontal position of the center of mass will accelerate in the direction of the horizontal net force from the pulley. That being a rightward (or briefly zero) net external horizontal force, the center of mass must be to the right of the wall when one of the two blocks first reaches the wall. Clearly, this can only happen if block A reaches the wall first.
Thank you
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
938
Replies
4
Views
849
  • · Replies 40 ·
2
Replies
40
Views
5K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
6
Views
2K