High School Which Energy Law is the Key to Understanding Work and Conservation?

Click For Summary
The discussion centers on identifying the most comprehensive energy conservation law among several equations. Participants agree that all equations serve to categorize energy forms and that the choice depends on the specific situation. One contributor emphasizes that understanding energy conservation is essentially a matter of bookkeeping, where it’s crucial to avoid double-counting energy sources. The third and fourth equations are highlighted as particularly significant, with one participant suggesting they are foundational to understanding energy conservation. Ultimately, clarity in categorizing energy types is deemed essential for effective application of these laws.
mark2142
Messages
228
Reaction score
42
Hi, everyone! There are a lot of work energy conservation laws and I get confused which one of them summarizes all of them. Which one I should keep with me and rest should be easy to derive on spot ?
1. ##\Delta E_{mec}=0##
2. ##\Delta E_{mec}=W_{ext}##
3.##\Delta E_{mec} + \Delta E_{ther}=W_{ext}##
4.##\Delta KE= W_{ext} +W_{c} +W_{nc}##
5.##\Delta E_{mec}=W_{nc}##

Which one?

Thank you for supporting.
 
Physics news on Phys.org
mark2142 said:
Hi, everyone! There are a lot of work energy conservation laws and I get confused which one of them summarizes all of them. Which one I should keep with me and rest should be easy to derive on spot ?
1. ##\Delta E_{mec}=0##
2. ##\Delta E_{mec}=W_{ext}##
3.##\Delta E_{mec} + \Delta E_{ther}=W_{ext}##
4.##\Delta KE= W_{ext} +W_{c} +W_{nc}##
5.##\Delta E_{mec}=W_{nc}##

Which one?

Thank you for supporting.
To me, they are all fairly obvious. You have a bunch of buckets where energy can show up. You may rule some out based on the situation. You may change which classification scheme you use to split things into buckets.

But as long as your buckets include all the places that energy can come from or go to and you are not double-counting anywhere, then you can write down an equation for energy conservation.

It's just book keeping.

Edit: I find the notions of "conservative" and "non-conservative" work to be wastes of time. If you have a potential associated with a force then you can use a bucket for the potential instead of a bucket for the associated work. The classification scheme I would use is "work that I am tracking using a potential" and "work that I am tracking as plain old work".
 
Last edited:
  • Like
Likes nasu and russ_watters
jbriggs444 said:
It's just book keeping.
OK! Thank you.
BTW I think its the 3rd/4th eqn which is the mother of all equations.
 
For simple comparison, I think the same thought process can be followed as a block slides down a hill, - for block down hill, simple starting PE of mgh to final max KE 0.5mv^2 - comparing PE1 to max KE2 would result in finding the work friction did through the process. efficiency is just 100*KE2/PE1. If a mousetrap car travels along a flat surface, a starting PE of 0.5 k th^2 can be measured and maximum velocity of the car can also be measured. If energy efficiency is defined by...

Similar threads

Replies
65
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
9
Views
4K
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
5
Views
473