1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Which is countable and which is uncountable ?

  1. Mar 22, 2008 #1
    1. The problem statement, all variables and given/known data

    Determine (with proofs) which of the following infinite sets are countable and which are uncountable:
    (i ) The set of all triples (x, y, z) where x, y, and z are rationals;
    (ii ) The set of all subsets of N;
    (iii ) The set of all finite subsets of N.

    Note: N is Natural Numbers

    2. Relevant equations
    I think there are no relevant equations for this question

    3. The attempt at a solution

    For (i), There is a theorem that states all rational sets are countable, so I think it is countable is this right ? If so, I don't know how to write the correct proof.

    For (ii), I think it is uncountable becasue the power set of a set S has strictly greater cardinality than S. Is this right, again I don't know how to write the proof for this one.

    For (iii), I think it is countable because all sets, constituting of elements from Z (or any countable set), but where an element can occur multiple times (but only finitely many times), is also countable (so these are like subsets, except elements can occur more than once). Is this right, again I don't know how to write the proof for this one.

    This is all I can do, can someone help me please ?
    Last edited: Mar 22, 2008
  2. jcsd
  3. Mar 22, 2008 #2


    User Avatar
    Staff Emeritus
    Science Advisor

    Do you have any idea what the definitions of "countable" and "uncountable" are?
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?