MHB Which method is easier and why?

mathdad
Messages
1,280
Reaction score
0
I found the following problem in Section 1.3 of my Precalculus textbook by David Cohen.

Factor x^6 - y^6 as a difference of squares and then as a difference of cubes.

1. Which method is easier and why?

2. Can someone get me started?
 
Mathematics news on Phys.org

Attachments

  • differenceof.jpg
    differenceof.jpg
    14.4 KB · Views: 121
Excellent!
 
RTCNTC said:
I found the following problem in Section 1.3 of my Precalculus textbook by David Cohen.

Factor x^6 - y^6 as a difference of squares and then as a difference of cubes.

1. Which method is easier and why?

2. Can someone get me started?

you can apply either way. but next steps become simpler if you apply difference of square

$x^6-y^6= (x^3+y^3)(x^3-y^3)$ 1st term is sum of cubes and second is difference of cubes and you get

$x^6-y^6= (x^3+y^3)(x^3-y^3)= (x+y)(x^2-xy+y^2)(x-y)(x^3+xy+y^2)$

had you chosen difference of cubes you would have got

$x^6-y^6 = (x^2-y^2)(x^4+x^2y^2+y^4)$

factoring $x^4+x^2y^2+y^4 = (x^4+2x^2y^2+y^4)- x^2y^2 = (x^2+y^2)^2 - (xy)^2 = (x^2+y^2+xy)(x^2+y^2-xy)$

above may not be straight forward but doable
 
kaliprasad said:
you can apply either way. but next steps become simpler if you apply difference of square

$x^6-y^6= (x^3+y^3)(x^3-y^3)$ 1st term is sum of cubes and second is difference of cubes and you get

$x^6-y^6= (x^3+y^3)(x^3-y^3)= (x+y)(x^2-xy+y^2)(x-y)(x^3+xy+y^2)$

had you chosen difference of cubes you would have got

$x^6-y^6 = (x^2-y^2)(x^4+x^2y^2+y^4)$

factoring $x^4+x^2y^2+y^4 = (x^4+2x^2y^2+y^4)- x^2y^2 = (x^2+y^2)^2 - (xy)^2 = (x^2+y^2+xy)(x^2+y^2-xy)$

above may not be straight forward but doable

Nice work in every sense.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
4
Views
1K
Replies
2
Views
2K
Replies
9
Views
2K
Replies
4
Views
3K
Back
Top