Which method is easier and why?

  • Context: MHB 
  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Difference Squares
Click For Summary
SUMMARY

The discussion focuses on factoring the expression x^6 - y^6 using two methods: the difference of squares and the difference of cubes. The consensus is that applying the difference of squares simplifies the next steps significantly. The factorization using the difference of squares yields (x^3+y^3)(x^3-y^3), which further breaks down into (x+y)(x^2-xy+y^2)(x-y)(x^3+xy+y^2). In contrast, using the difference of cubes leads to a more complex factorization.

PREREQUISITES
  • Understanding of polynomial factorization techniques
  • Familiarity with the difference of squares method
  • Knowledge of the difference of cubes method
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the difference of squares in-depth
  • Learn about the difference of cubes and its applications
  • Practice polynomial factorization with various expressions
  • Explore advanced factoring techniques in algebra
USEFUL FOR

Students studying algebra, educators teaching polynomial factorization, and anyone looking to improve their mathematical problem-solving skills.

mathdad
Messages
1,280
Reaction score
0
I found the following problem in Section 1.3 of my Precalculus textbook by David Cohen.

Factor x^6 - y^6 as a difference of squares and then as a difference of cubes.

1. Which method is easier and why?

2. Can someone get me started?
 
Mathematics news on Phys.org

Attachments

  • differenceof.jpg
    differenceof.jpg
    14.4 KB · Views: 136
Excellent!
 
RTCNTC said:
I found the following problem in Section 1.3 of my Precalculus textbook by David Cohen.

Factor x^6 - y^6 as a difference of squares and then as a difference of cubes.

1. Which method is easier and why?

2. Can someone get me started?

you can apply either way. but next steps become simpler if you apply difference of square

$x^6-y^6= (x^3+y^3)(x^3-y^3)$ 1st term is sum of cubes and second is difference of cubes and you get

$x^6-y^6= (x^3+y^3)(x^3-y^3)= (x+y)(x^2-xy+y^2)(x-y)(x^3+xy+y^2)$

had you chosen difference of cubes you would have got

$x^6-y^6 = (x^2-y^2)(x^4+x^2y^2+y^4)$

factoring $x^4+x^2y^2+y^4 = (x^4+2x^2y^2+y^4)- x^2y^2 = (x^2+y^2)^2 - (xy)^2 = (x^2+y^2+xy)(x^2+y^2-xy)$

above may not be straight forward but doable
 
kaliprasad said:
you can apply either way. but next steps become simpler if you apply difference of square

$x^6-y^6= (x^3+y^3)(x^3-y^3)$ 1st term is sum of cubes and second is difference of cubes and you get

$x^6-y^6= (x^3+y^3)(x^3-y^3)= (x+y)(x^2-xy+y^2)(x-y)(x^3+xy+y^2)$

had you chosen difference of cubes you would have got

$x^6-y^6 = (x^2-y^2)(x^4+x^2y^2+y^4)$

factoring $x^4+x^2y^2+y^4 = (x^4+2x^2y^2+y^4)- x^2y^2 = (x^2+y^2)^2 - (xy)^2 = (x^2+y^2+xy)(x^2+y^2-xy)$

above may not be straight forward but doable

Nice work in every sense.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
4
Views
2K