Which of the following are Hausdorff?

  • Thread starter Thread starter sa1988
  • Start date Start date
Click For Summary
The discussion centers on determining which of four given topologies are Hausdorff. It concludes that the first three topologies are not Hausdorff because any two non-empty open sets intersect, while the fourth topology is Hausdorff as it allows for disjoint neighborhoods. Participants emphasize the importance of providing symbolic reasoning to support these conclusions. Additionally, there's a suggestion to explore the relationship between finite spaces and the Hausdorff property. Understanding these concepts is crucial for navigating the complexities of topology.
sa1988
Messages
221
Reaction score
23

Homework Statement



Which of the following topologies are Hausdorff (if any)?

{∅, {a,b} }

{∅, {a}, {a,b} }

{∅, {b}, {a,b} }

{∅, {a}, {b}, {a,b} }

Homework Equations



Definitions:

A neighbourhood U of x is an open set U⊂X such that xϵU

A topological space is Hausdorff if for each pair x, y of distinct points in X there exist neighbourhoods U of x and V of y which are disjoint.

The Attempt at a Solution

[/B]

Another description I've seen for the Hausdorff property is that for some two subsets U and V in X, the intersection of U and V is the empty set.

Looking at the given topologies, it seems that only the last one is Hausdorff. One can take {a} and {b} and see that their intersection is ∅. .

Hoping I'm correct with this? I just wanted to put it by the physics forum crowd because topology is a new and potentially worrying subject I've taken on at university, with a lot of new definitions and terminology being thrown around at quite a fast pace!

Thanks :oldsmile:
 
Physics news on Phys.org
You are on the right track, but it might help to write out your reasoning. i.e. If you believe the first 3 are not Hausdorff, you should be able to say why, in symbols. You can use you "other description" to do so. i.e. Why (in symbols) do you believe the first isn't Hausdorff? Prove it!
 
And yes topology definitions are going to come at you hard and fast.
braceyourself.jpg
 
  • Like
Likes sa1988
dkotschessaa said:
You are on the right track, but it might help to write out your reasoning. i.e. If you believe the first 3 are not Hausdorff, you should be able to say why, in symbols. You can use you "other description" to do so. i.e. Why (in symbols) do you believe the first isn't Hausdorff? Prove it!

Alright, I'd say for the topologies ##\tau_n ## in the above question statement,
for ##n=[1,3] ## and taking any ##U, V \subset \tau## where ##U \not= V## and ##U, V \not= \emptyset##,
##U \cap V \not= \emptyset## for all ## U, V##, hence ##\tau_1, \tau_2, \tau_3## are not Hausorff

whereas for ##\tau_4## there exists ## U, V \subset \tau## such that ##U \cap V = \emptyset##, hence ##\tau_4## is Hausdorff.
 
Try to prove that a finite space is Hausdorff if and only if it is discrete. That's a fun exercise.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
20
Views
4K
  • · Replies 3 ·
Replies
3
Views
7K
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K